Two dice are thrown. What is the probability that the sum of the numbers appearing on the two dice is $11$, if $5$ appears on the first
$\frac{1}{{36}}$
$\frac{1}{6}$
$\frac{5}{6}$
None of these
Prove that if $E$ and $F$ are independent events, then so are the events $\mathrm{E}$ and $\mathrm{F}^{\prime}$.
Consider an experiment of tossing a coin repeatedly until the outcomes of two consecutive tosses are same. If the probability of a random toss resulting in head is $\frac{1}{3}$, then the probability that the experiment stops with head is.
If $P(B) = \frac{3}{4}$, $P(A \cap B \cap \bar C) = \frac{1}{3}{\rm{ }}$ and $P(\bar A \cap B \cap \bar C) = \frac{1}{3},$ then $P(B \cap C)$ is
India plays two matches each with West Indies and Australia. In any match the probabilities of India getting point $0, 1$ and $2$ are $0.45, 0.05$ and $0.50$ respectively. Assuming that the outcomes are independents, the probability of India getting at least $7$ points is
In a class of $60$ students, $30$ opted for $NCC$ , $32$ opted for $NSS$ and $24$ opted for both $NCC$ and $NSS$. If one of these students is selected at random, find the probability that The student has opted $NSS$ but not $NCC$.