If $A$ and $B$ are two independent events, then the probability of occurrence of at least one of $\mathrm{A}$ and $\mathrm{B}$ is given by $1 -\mathrm{P}\left(\mathrm{A}^{\prime}\right) \mathrm{P}\left(\mathrm{B}^{\prime}\right)$
We have
$P($ at least one of $A $ and $ B)=P(A \cup B)$
$=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A} \cap \mathrm{B})$
$=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A}) \mathrm{P}(\mathrm{B}$
$=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})[1-\mathrm{P}(\mathrm{A})]$
$=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B}) . \mathrm{P}\left(\mathrm{A}^{\prime}\right)$
$=1-\mathrm{P}\left(\mathrm{A}^{\prime}\right)+\mathrm{P}(\mathrm{B}) \mathrm{P}\left(\mathrm{A}^{\prime}\right)$
$=1-P\left(A^{\prime}\right)[1-P(B)]$
$=1-P\left(A^{\prime}\right) P\left(B^{\prime}\right)$
Three ships $A, B$ and $C$ sail from England to India. If the ratio of their arriving safely are $2 : 5, 3 : 7$ and $6 : 11$ respectively then the probability of all the ships for arriving safely is
The odds against a certain event is $5 : 2$ and the odds in favour of another event is $6 : 5$. If both the events are independent, then the probability that at least one of the events will happen is
True statement $A$ and true statement $B$ are two independent events of an experiment.Let $P\left( A \right) = 0.3$ , $P\left( {A \vee B} \right) = 0.8$ then $P\left( {A \to B} \right)$ is (where $P(X)$ denotes probability that statement $X$ is true statement)
If an integer is chosen at random from first $100$ positive integers, then the probability that the chosen number is a multiple of $4$ or $6$, is
For an event, odds against is $6 : 5$. The probability that event does not occur, is