Events $E$ and $F$ are such that $P ( $ not  $E$ not $F )=0.25,$ State whether $E$ and $F$ are mutually exclusive.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

It is given that $P$ (not $E$ or not $F$ ) $=0.25$

i.e.,  $P \left( E ^{\prime} \cap F ^{\prime}\right)=0.25$

$\Rightarrow P ( E \cap F )^{\prime} =0.25$              $[ E^{\prime} \cup F^{\prime} =( E \cap F )^{\prime}]$

Now, $P ( E \cap F )=1- P ( E \cap F )^{\prime}$

$\Rightarrow P ( E \cap F )=1-0.25$

$\Rightarrow P ( E \cap F )=0.75 \neq 0$

$\Rightarrow E \cap F \neq \phi$

Thus, $E$ and $F$ are not mutually exclusive.

Similar Questions

Consider three sets $E_1=\{1,2,3\}, F_1=\{1,3,4\}$ and $G_1=\{2,3,4,5\}$. Two elements are chosen at random, without replacement, from the set $E _1$, and let $S _1$ denote the set of these chosen elements.

Let $E_2=E_1-S_1$ and $F_2=F_1 \cup S_1$. Now two elements are chosen at random, without replacement, from the set $F_2$ and let $S_2$ denote the set of these chosen elements.

Let $G _2= G _1 \cup S _2$. Finally, two elements are chosen at random, without replacement, from the set $G _2$ and let $S _3$ denote the set of these chosen elements.

Let $E_3=E_2 \cup S_3$. Given that $E_1=E_3$, let $p$ be the conditional probability of the event $S_1=\{1,2\}$. Then the value of $p$ is

  • [IIT 2021]

Two cards are drawn at random and without replacement from a pack of $52$ playing cards. Finds the probability that both the cards are black.

An unbiased die is thrown twice. Let the event $A$ be 'odd number on the first throw' and $B$ the event 'odd number on the second throw '. Check the independence of the events $A$ and $B$.

In two events $P(A \cup B) = 5/6$, $P({A^c}) = 5/6$, $P(B) = 2/3,$ then $A$ and $B$ are

The probability that $A$ speaks truth is $\frac{4}{5}$, while this probability for $B$ is $\frac{3}{4}$. The probability that they contradict each other when asked to speak on a fact

  • [IIT 1975]