Events $E$ and $F$ are such that $P ( $ not $E$ not $F )=0.25,$ State whether $E$ and $F$ are mutually exclusive.
It is given that $P$ (not $E$ or not $F$ ) $=0.25$
i.e., $P \left( E ^{\prime} \cap F ^{\prime}\right)=0.25$
$\Rightarrow P ( E \cap F )^{\prime} =0.25$ $[ E^{\prime} \cup F^{\prime} =( E \cap F )^{\prime}]$
Now, $P ( E \cap F )=1- P ( E \cap F )^{\prime}$
$\Rightarrow P ( E \cap F )=1-0.25$
$\Rightarrow P ( E \cap F )=0.75 \neq 0$
$\Rightarrow E \cap F \neq \phi$
Thus, $E$ and $F$ are not mutually exclusive.
Let $E$ and $F$ be two independent events. The probability that both $E$ and $F$ happens is $\frac{1}{{12}}$ and the probability that neither $E$ nor $F$ happens is $\frac{1}{2},$ then
A card is drawn from a pack of $52$ cards. A gambler bets that it is a spade or an ace. What are the odds against his winning this bet
Let $S$ be a set containing n elements and we select $2$ subsets $A$ and $B$ of $S$ at random then the probability that $A \cup B = S$ and $A \cap B = \phi $ is
If from each of the three boxes containing $3$ white and $1$ black, $2$ white and $2$ black, $1$ white and $3$ black balls, one ball is drawn at random, then the probability that $2$ white and $1$ black ball will be drawn is
$A , B, C$ try to hit a target simultaneously but independently. Their respective probabilities of hitting targets are $\frac{3}{4},\frac{1}{2},\frac{5}{8}$. The probability that the target is hit by $A$ or $B$ but not by $C$ is