- Home
- Standard 11
- Physics
આકૃતિમાં દર્શાવેલ $P-V$ આલેખમાં સમાન વાયુ માટે બે જુદા-જુદા સમોષ્મી પથો બે સમતાપીય વક્રોને છદે છે. $\frac{V_a}{V_d}$ ગુણોત્તર અને $\frac{V_s}{V_c}$ ગુણોત્તર વચ્ચેનો સંબંધ. . . . . . . છે.

$\frac{V_a}{V_d}=\left(\frac{V_b}{V_c}\right)^{-1}$
$\frac{V_a}{V_d} \neq \frac{V_b}{V_c}$
$\frac{V_a}{V_d}=\frac{V_b}{V_c}$
$\frac{V_a}{V_d}=\left(\frac{V_b}{V_c}\right)^2$
Solution
For adiabatic process
$\mathrm{TV}^{\gamma-1}=\text { constant }$
$\mathrm{T}_{\mathrm{a}} \cdot \mathrm{V}_{\mathrm{a}}^{\gamma-1}=\mathrm{T}_{\mathrm{d}} \cdot \mathrm{V}_{\mathrm{d}}^{\gamma-1}$
$\left(\frac{\mathrm{V}_{\mathrm{a}}}{\mathrm{V}_{\mathrm{d}}}\right)^{\gamma-1}=\frac{\mathrm{T}_{\mathrm{d}}}{\mathrm{T}_{\mathrm{a}}}$
$\mathrm{T}_{\mathrm{b}} \cdot \mathrm{V}_{\mathrm{b}}^{\gamma-1}=\mathrm{T}_{\mathrm{c}} \cdot \mathrm{V}_{\mathrm{c}}^{\gamma-1}$
$\left(\frac{\mathrm{V}_{\mathrm{b}}}{\mathrm{V}_{\mathrm{c}}}\right)^{\gamma-1}=\frac{\mathrm{T}_{\mathrm{c}}}{\mathrm{T}_{\mathrm{b}}}$
$\mathrm{T}_{\mathrm{b}} \cdot \mathrm{V}_{\mathrm{b}}^{\gamma-1}=\mathrm{T}_{\mathrm{c}} \cdot \mathrm{V}_{\mathrm{c}}^{\gamma-1}$
$\left(\frac{\mathrm{V}_{\mathrm{b}}}{\mathrm{V}_{\mathrm{c}}}\right)^{\gamma-1}=\frac{\mathrm{T}_{\mathrm{c}}}{\mathrm{T}_{\mathrm{b}}}$
$\frac{\mathrm{V}_{\mathrm{a}}}{\mathrm{V}_{\mathrm{d}}}=\frac{\mathrm{V}_{\mathrm{b}}}{\mathrm{V}_{\mathrm{c}}} \quad\left(\begin{array}{r}\because \mathrm{T}_{\mathrm{d}}=\mathrm{T}_{\mathrm{c}} \\ \mathrm{T}_{\mathrm{a}}=\mathrm{T}_{\mathrm{b}}\end{array}\right)$