Two equally charged, identical metal spheres $A$ and $B$ repel each other with a force '$F$'. The spheres are kept fixed with a distance '$r$' between them. A third identical, but uncharged sphere $C$ is brought in contact with $A$ and then placed at the mid-point of the line joining $A$ and $B$. The magnitude of the net electric force on $C$ is
$F$
$3F/4$
$F/2$
$F/4$
Total charge $-\,Q$ is uniformly spread along length of a ring of radius $R$. A small test charge $+q$ of mass m is kept at the centre of the ring and is given a gentle push along the axis of the ring.
$(a) $ Show that the particle executes a simple harmonic oscillation.
$(b)$ Obtain its time period.
Two copper balls, each weighing $10\,g$ are kept in air $10\, cm$ apart. If one electron from every ${10^6}$ atoms is transferred from one ball to the other, the coulomb force between them is (atomic weight of copper is $63.5$)
In a medium, the force of attraction between two point charges, distance $d$ apart, is $F$. What distance apart should these point charges be kept in the same medium, so that the force between them becomes $16\, F$ ?
Check that the ratio $ke ^{2} / G m _{ e } m _{ p }$ is dimensionless. Look up a Table of Physical Constants and determine the value of this ratio. What does the ratio signify?
Two charges each equal to $2\,\mu C$ are $0.5\,m$ apart. If both of them exist inside vacuum, then the force between them is.......$N$