નીચેના પૈકી .......... વિકલ્પ માટે ઘટનાઓ $A$ અને $B$ નિરપેક્ષ થશે :
$A$ અને $B$ એ પરસ્પર નિ :શેષ છે
$P\left(A^{\prime} B^{\prime}\right)=[1-P(A)][1-P(B)]$
$P(A)=P(B)$
$P(A)+P(B)=1$
જેના પર $1$ થી $100$ નંબર લખેલા છે એવી લોટરીની $100$ ટિકિટો છે. યાર્દચ્છિક રીતે એક ટિકિટ ખેંચતા તેના પરનો નંબર $3$ અથવા $5$ નો ગુણક હોય તેની સંભાવના મેળવો.
ઘટના ${\text{A, B}}$ છે $P(A \cup B)\,\, = \,\,\frac{3}{4},\,P(A \cap B)\,\, = \,\,\frac{1}{4},\,P(A')\,\, = \,\,\frac{2}{3}$ તો ${\text{P (A' }} \cap {\text{ B)}} = ......$
જો $P(B) = \frac{3}{4}$, $P(A \cap B \cap \bar C) = \frac{1}{3}{\rm{ }}$ અને $P(\bar A \cap B \cap \bar C) = \frac{1}{3},$ તો $P(B \cap C)$ = . . .
જો $A$ અને $B$ એવી ઘટનાઓ છે કે જેથી $P(A\, \cup \,\,B)\,\, = \,\,\frac{3}{4},\,\,P(A\,\, \cap \,\,B)\,\, = \,\,\frac{1}{4}\,,\,P(\overline A )\,\, = \,\,\frac{2}{3},\,$ હોય , તો $P(\overline A \,\, \cap \,\,B)\,$ બરાબર શું થાય?
જો $A, B, C$ એ કોઈ યાદચ્છિક પ્રયોગ સાથે સંકળાયેલ ત્રણ ઘટનાઓ હોય, તો સાબિત કરો કે $P ( A \cup B \cup C ) $ $= P ( A )+ P ( B )+ P ( C )- $ $P ( A \cap B )- P ( A \cap C ) $ $- P ( B \cap C )+ $ $P ( A \cap B \cap C )$