दो बलों, जिनमें प्रत्येक का परिमाण $F$ है, का परिणामी भी $F$ हो तो दोनों बलों के बीच कोण ....... $^o$ है
$45$
$120$
$150$
$60$
सदिशों $\mathop A\limits^ \to ,\,\mathop B\limits^ \to $ तथा $\mathop C\limits^ \to $के परिमाण क्रमश: $3, 4$ तथा $5$ इकाई हैं। यदि $\mathop A\limits^ \to + \mathop B\limits^ \to = \mathop C\limits^ \to $, तब सदिश $\mathop A\limits^ \to $ तथा $\mathop B\limits^ \to $ के बीच कोण होगा
$\overrightarrow A + \overrightarrow B $ का परिणामी ${\mathop R\limits^ \to _1}$ है। सदिश $\overrightarrow {B,} $ को पलटने (विपरीत दिशा) पर परिणामी ${\mathop R\limits^ \to _2}$ हो जाता है। $R_1^2 + R_2^2$ का मान क्या होगा
चित्रानुसार बलों $\overrightarrow{ OP }, \overrightarrow{ OQ }, \overrightarrow{ OR }, \overrightarrow{ OS }$ तथा $\overrightarrow{ OT }$ का परिणामी लगभग होता है।
[मान लिजिए: $\sqrt{3}=1.7, \sqrt{2}=1.4$ । दिया है $\hat{i}$ तथा $\hat{ j }$ क्रमश: $x$ तथा $y$ अक्ष के अनुदिश इकाई सदिश हैं]
कोई साइकिल सवार किसी वृत्तीय पार्क के केंद्र $O$ से चलना शुरू करता है तथा पार्क के किनारे $P$ पर पहुँचता है। पुनः वह पार्क की परिधि के अनुदिश साइकिल चलाता हुआ $QO$ के रास्ते ( जैसा चित्र में दिखाया गया है) केंद्र पर वापस आ जाता है । पार्क की त्रिज्या $1\, km$ है । यदि पूरे चक्कर में $10$ मिनट लगते हों तो साइकिल सवार का $(a)$ कुल विस्थापन, $(b)$ औसत वेग, तथा $(c)$ औसत चाल क्या होगी ?
यदि दो सदिश $2\hat i + 3\hat j - \hat k$ तथा $ - 4\hat i - 6\hat j + \lambda \hat k$ एक दूसरे के समान्तर हों तो का मान होगा