Two forces $\vec{F}_1$ and $\vec{F}_2$ are acting on a body. One force has magnitude thrice that of the other force and the resultant of the two forces is equal to the force of larger magnitude. The angle between $\vec{F}_1$ and $\overrightarrow{\mathrm{F}}_2$ is $\cos ^{-1}\left(\frac{1}{\mathrm{n}}\right)$. The value of $|\mathrm{n}|$ is__________.

  • [JEE MAIN 2024]
  • A

    $6$

  • B

    $7$

  • C

    $8$

  • D

    $9$

Similar Questions

The vector that must be added to the vector $\hat i - 3\hat j + 2\hat k$ and $3\hat i + 6\hat j - 7\hat k$ so that the resultant vector is a unit vector along the $y-$axis is

If $y = 1 + x + {{{x^2}} \over {2\,!}} + {{{x^3}} \over {3\,!}} + ..... + {{{x^n}} \over {n\,!}}$, then ${{dy} \over {dx}} = $

The vector sum of two forces is perpendicular to their vector differences. In that case, the forces

  • [AIPMT 2003]

A scooter going due east at $10\, ms^{-1}$ turns right through an angle of $90^°$. If the speed of the scooter remains unchanged in taking turn, the change is the velocity of the scooter is

Two forces $3\,N$ and $2\, N$ are at an angle $\theta$ such that the resultant is $R$. The first force is now increased to $ 6\,N$ and the resultant become $2R$. The value of is ....... $^o$