Two forces $\vec{F}_1$ and $\vec{F}_2$ are acting on a body. One force has magnitude thrice that of the other force and the resultant of the two forces is equal to the force of larger magnitude. The angle between $\vec{F}_1$ and $\overrightarrow{\mathrm{F}}_2$ is $\cos ^{-1}\left(\frac{1}{\mathrm{n}}\right)$. The value of $|\mathrm{n}|$ is__________.

  • [JEE MAIN 2024]
  • A

    $6$

  • B

    $7$

  • C

    $8$

  • D

    $9$

Similar Questions

If the angle between $\hat a$ and $\hat b$ is $60^o$, then which of the following  vector $(s)$ have magnitude one

$(A)$ $\frac{\hat a + \hat b}{\sqrt 3}$     $(B)$ $\hat a + \widehat b$     $(C)$ $\hat a$      $(D)$ $\hat b$

The position vector of a particle is determined by the expression $\vec r = 3{t^2}\hat i + 4{t^2}\hat j + 7\hat k$ The distance traversed in first $10 \,sec$ is........ $m$

If two vectors $2\hat i + 3\hat j - \hat k$ and $ - 4\hat i - 6\hat j + \lambda \hat k$ are parallel to each other then value of $\lambda$ be

Two forces each numerically equal to $10$ $dynes$ are acting as shown in the adjoining figure, then the magnitude of resultant is.........$dyne$

Establish the following vector inequalities geometrically or otherwise:

$(a)$ $\quad| a + b | \leq| a |+| b |$

$(b)$ $\quad| a + b | \geq| a |-| b |$

$(c)$ $\quad| a - b | \leq| a |+| b |$

$(d)$ $\quad| a - b | \geq| a |-| b |$

When does the equality sign above apply?