Two equal forces ($P$ each) act at a point inclined to each other at an angle of $120^°$. The magnitude of their resultant is
$P/2$
$P/4$
$P$
$2P$
Given that $\vec A\, + \,\vec B\, = \,\vec C\,.$ If $\left| {\vec A} \right|\, = \,4,\,\,\left| {\vec B} \right|\, = \,5\,\,$ and $\left| {\vec C} \right|\, =\,\sqrt {61}$ the angle between $\vec A\,\,$ and $\vec B$ is ....... $^o$
If the resultant of $n$ forces of different magnitudes acting at a point is zero, then the minimum value of $n$ is
Find the resultant of three vectors $\overrightarrow {OA} ,\,\overrightarrow {OB} $ and $\overrightarrow {OC} $ shown in the following figure. Radius of the circle is $R$.
Add vectors $\overrightarrow{ A }, \overrightarrow{ B }$ and $\overrightarrow{ C }$ each having magnitude of $50$ unit and inclined to the $X$-axis at angles $45^{\circ}, 135^{\circ}$ and $315^{\circ}$ respectively.