Two forces are such that the sum of their magnitudes is $18 \,N$ and their resultant is perpendicular to the smaller force and magnitude of resultant is $12\, N$. Then the magnitudes of the forces are
$12\, N, 6 \,N$
$13\, N, 5\,N$
$10\, N, 8 \,N$
$16\, N, 2\, N$
How many minimum number of coplanar vectors having different magnitudes can be added to give zero resultant
A body is moving under the action of two forces ${\vec F_1} = 2\hat i - 5\hat j\,;\,{\vec F_2} = 3\hat i - 4\hat j$. Its velocity will become uniform under an additional third force ${\vec F_3}$ given by
Two vectors $\vec A$ and $\vec B$ have equal magnitudes. The magnitude of $(\vec A + \vec B)$ is $‘n’$ times the magnitude of $(\vec A - \vec B)$. The angle between $ \vec A$ and $\vec B$ is
Establish the following vector inequalities geometrically or otherwise:
$(a)$ $\quad| a + b | \leq| a |+| b |$
$(b)$ $\quad| a + b | \geq| a |-| b |$
$(c)$ $\quad| a - b | \leq| a |+| b |$
$(d)$ $\quad| a - b | \geq| a |-| b |$
When does the equality sign above apply?