दो बल इस प्रकार हैं कि इनके योग का परिमाण $18\, N$ एवं इनका परिणामी (जिसका परिमाण $12\, N$ है) कम परिमाण के बल पर लम्बवत् है। तब बलों के परिमाण है
$12 \,N, 6\, N$
$13\, N, 5\,N$
$10 \,N, 8 \,N$
$16\, N, 2\, N$
निम्नलिखित असमिकाओं की ज्यामिति या किसी अन्य विधि द्रारा स्थापना कीजिए
$(a)$ $\quad| a + b | \leq| a |+| b |$
$(b)$ $\quad| a + b | \geq| a |-| b |$
$(c)$ $\quad| a - b | \leq| a |+| b |$
$(d)$ $\quad| a - b | \geq| a |-| b |$
इनमें समिका (समता) का चिह्न कब लागू होता है ?
अभिकथन $A$ : यदि $A , B , C , D$ अर्ध वत्त (केन्द्र $'O'$) पर स्थित चार बिन्दु इस प्राकार है कि
$|\overrightarrow{ AB }|=|\overrightarrow{ BC }|=|\overrightarrow{ CD }|$ तो
$\overrightarrow{ AB }+\overrightarrow{ AC }+\overrightarrow{ AD }=4 \overrightarrow{ AO }+\overrightarrow{ OB }+\overrightarrow{ OC }$
कारण $R$ : सदिशों के बहुभुज नियम के अनुसार
उपरोक्त कथनानुसार, सबसे उपयुक्त विकल्प को दिए गए विकल्पों में से चुनिए।
परिमाण $2 F$ तथा $3 F$ वाले दो बल $P$ तथा $Q$ एक-दूसरे के साथ $\theta$ कोण पर लगाये जाते हैं। यदि बल $Q$ को दुगुना कर दिया जाए तो उनका परिणामी बल भी दुगुना हो जाता है तो कोण $\theta$ का मान ...... $^o$ है।
विस्थापन $25\hat i - 6\hat j\,\,m$ में कितना विस्थापन जोड़ें कि $X-$ दिशा में $7.0 \,m $ का विस्थापन प्राप्त हो
दो सदिश $\overrightarrow{ A }$ एवं $\overrightarrow{ B }$ के परिमाण एक समान है। यदि $\overrightarrow{ A }+\overrightarrow{ B }$ का परिमाण $\overrightarrow{ A }-\overrightarrow{ B }$ के परिमाण का दो गुना है तो $\overrightarrow{ A }$ एवं $\overrightarrow{ B }$ के बीच कोण होगा $-$