Two forces of magnitude $P$ & $Q$ acting at a point have resultant $R$. The resolved part of $R$ in the direction of $P$ is of magnitude $Q$. Angle between the forces is :
$2{\sin ^{ - 1}}\left( {\frac{P}{{2Q}}} \right)$
$2{\sin ^{ - 1}}\left( {\frac{P}{{2Q}}} \right)^{\frac{1}{2}}$
$2{\cos ^{ - 1}}\left( {\frac{P}{{2Q}}} \right)$
$2{\cos ^{ - 1}}\left( {\frac{P}{{2Q}}} \right)^{\frac{1}{2}}$
A bus is moving on a straight road towards north with a uniform speed of $50\; km / hour$ then it turns left through $90^{\circ} .$ If the speed remains unchanged after turning, the increase in the velocity of bus in the turning process is
“Explain Triangle method (head to tail method) of vector addition.”
A particle has displacement of $12 \,m$ towards east and $5 \,m$ towards north then $6 \,m $ vertically upward. The sum of these displacements is........$m$
Which pair of the following forces will never give resultant force of $2\, N$
Two vectors $\overrightarrow{{X}}$ and $\overrightarrow{{Y}}$ have equal magnitude. The magnitude of $(\overrightarrow{{X}}-\overrightarrow{{Y}})$ is ${n}$ times the magnitude of $(\overrightarrow{{X}}+\overrightarrow{{Y}})$. The angle between $\overrightarrow{{X}}$ and $\overrightarrow{{Y}}$ is -