Two forces of magnitude $P$ & $Q$ acting at a point have resultant $R$. The resolved  part of $R$ in the direction of $P$ is of magnitude $Q$. Angle between the forces is :

  • A

    $2{\sin ^{ - 1}}\left( {\frac{P}{{2Q}}} \right)$

  • B

    $2{\sin ^{ - 1}}\left( {\frac{P}{{2Q}}} \right)^{\frac{1}{2}}$

  • C

    $2{\cos ^{ - 1}}\left( {\frac{P}{{2Q}}} \right)$

  • D

    $2{\cos ^{ - 1}}\left( {\frac{P}{{2Q}}} \right)^{\frac{1}{2}}$

Similar Questions

$ABC$ is an equilateral triangle. Length of each side is $a$ and centroid is point $O$. then $\overrightarrow{O A}+\overrightarrow{O B}+\overrightarrow{O C}=.......$

If $|{\overrightarrow V _1} + {\overrightarrow V _2}|\, = \,|{\overrightarrow V _1} - {\overrightarrow V _2}|$ and ${V_2}$ is finite, then

Two vectors $\vec A$ and $\vec B$ have equal magnitudes. The magnitude of $(\vec A + \vec B)$ is $‘n’$ times the magnitude of $(\vec A - \vec B)$. The angle between $ \vec A$ and $\vec B$ is

  • [JEE MAIN 2019]

How many minimum number of coplanar vectors having different magnitudes can be added to give zero resultant

Following sets of three forces act on a body. Whose resultant cannot be zero