दो समान पतले वलय, जिनमें से प्रत्येक की त्रिज्या $R$ मीटर है, एक-दूसरे से $R$ मीटर की दूरी पर समाक्षत: रख दिए जाते हैं। यदि $Q_1$ कूलॉम और $Q_2$ कूलॉम आवेश उन वलयों पर समान रूप से फैला दिए जाते हें तो एक आवेश $q$ को एक वलय के केन्द्र से दूसरे वलय के केन्द्र तक ले जाने में किया गया कार्य होगा
शून्य
$\frac{{q({Q_1} - {Q_2})(\sqrt 2 - 1)}}{{\sqrt 2 .4\pi {\varepsilon _0}R}}$
$\frac{{q\sqrt 2 ({Q_1} + {Q_2})}}{{4\pi {\varepsilon _0}R}}$
$\frac{{q({Q_1} + {Q_2})(\sqrt 2 + 1)}}{{\sqrt 2 .4\pi {\varepsilon _0}R}}$
द्रव्यमान $m$ तथा आवेश $q$ का एक कण पर एक विधुत क्षेत्र $E ( x )= E _{0}\left(1- ax ^{2}\right)$, जो $x$-दिशा में है, लगाया जाता है। यहाँ पर $a$ तथा $E _{0}$ स्थिरांक है आरम्भ में कण $x =0$ पर विरामावस्था में है। प्रारम्भिक अवस्था के अतिरिक्त मूल बिन्दु से कण की किस दूरी पर कण की गतिज ऊर्जा शून्य होगी?
$10\, e.s.u.$ आवेश को $40\, e.s.u.$ आवेश से $2$ सेमी तथा $20\, e.s.u.$ आवेश से $4$ सेमी की दूरी पर रखा जाता है। अर्ग में $10\,e.s.u.$ आवेश की स्थितिज ऊर्जा है
एक इलेक्ट्रॉन विराम से $50\, V$ विभव वाले बिन्दु से $70\, V$ विभव वाले बिन्दु तक गति करता है, अंतिम अवस्था में इसकी गतिज ऊर्जा होगी
$m$ द्रव्यमान के एक बिन्दु आवेश $q$ को $\ell$ लम्बाई की एक डोरी द्वारा ऊर्ध्वाधर रूप से लटकाया जाता है। अब द्विध्रुव आघूर्ण $\overrightarrow{ p }$ के एक बिन्दु द्विध्रुव को अनन्त से $q$ की ओर इस प्रकार लाया जाता है कि आवेश दूर गति करता है। द्विध्रुव की दिशा, कोणों तथा दूरियों सहित निकाय की अन्तिम साम्य स्थिति नीचे चित्र में दर्शायी गई है। यदि द्विध्रुव को इस स्थिति तक लाने में किया गया कार्य $N \times( mgh )$ है, जहाँ $g$ गुरूत्वीय त्वरण है, जब $N$ का मान. . . . . . . है। (ध्यान दीजिये की बिन्दु द्रव्यमान को साम्यावस्था में बनाए रखते हुए तीन समतलीय बलों के लिए, $\frac{ F }{\sin \theta}$ सभी बलों के लिए समान है, जहाँ $F$ कोई एक बल है तथा $\theta$ अन्य दो बलों के मध्य कोण है।)
एक बिन्दु आवेश $q$ को $r$ त्रिज्या वाले एक वृत्त में $Q$ आवेश के चारों ओर घुमाने में किया गया कार्य होगा