બે $+\sigma$ પૃષ્ઠ વિજભાર ઘનતા ધરાવતા અનંત સમતલને એક બીજા સાથે $30^{\circ} $ ના ખૂણે મૂકવામાં આવે છે, તો તેમની વચ્ચેના ક્ષેત્રમાં વિદ્યુતક્ષેત્ર કેટલું થાય?
$\frac{\sigma}{\varepsilon_{0}}\left[\left(1+\frac{\sqrt{3}}{2}\right) \hat{\mathrm{y}}+\frac{\hat{\mathrm{x}}}{2}\right]$
$\frac{\sigma}{2 \varepsilon_{0}}\left[\left(1-\frac{\sqrt{3}}{2}\right) \hat{\mathrm{y}}-\frac{\hat{\mathrm{x}}}{2}\right]$
$\frac{\sigma}{2 \varepsilon_{0}}\left[(1+\sqrt{3}) \hat{\mathrm{y}}+\frac{\hat{\mathrm{x}}}{2}\right]$
$\frac{\sigma}{2 \varepsilon_{0}}\left[(1+\sqrt{3}) \hat{\mathrm{y}}-\frac{\hat{\mathrm{x}}}{2}\right]$
$R$ ત્રિજ્યા ધરાવતો અનંત ધન નળાકારમાં અચળ વિજભાર કદ ઘનતા $\rho$ છે. તેના અંદર $R/2$ ત્રિજ્યા ધરાવતી ગોળીય બખોલ છે. જેનું કેન્દ્ર અક્ષ પર છે. નળાકારની અક્ષથી $2R$ અંતરે આવેલ $P$ બિંદુએ વિદ્યુતક્ષેત્ર $\frac{{23\rho R}}{{16K{\varepsilon _0}}}$ હોય તો $K$ નું મૂલ્ય કેટલું હશે?
$ + \lambda \,C/m$ અને $ - \lambda \,C/m$ના બે સમાંતર અનંત રેખીય વિધુતભારો કે જે રેખીય વિજભાર ઘનતા ધરાવે છે તેઓને મુક્ત અવકાશમાં એક બીજાથી $2R$ અંતરે મુકેલ છે. આ બે રેખીય વિજભારની મધ્યમાં વિદ્યુતક્ષેત્ર કેટલું હશે ?
ધન વિદ્યુતભારીત અને અનંત લંબાઈ ધરાવતા સીધા ધાગા ( દોરી) ની રેખીય વિદ્યુતભાર ધનતા $\lambda \mathrm{Cm}^{-1}$ છે. એક ઈલેક્ટ્રોન તેની અક્ષ પરની લંબાઈની દિશામાં રહે તે રીતે વર્તુળાકાર પથપર ભ્રમણ કરે છે. ઈલેક્ટ્રોનની તાર થી વર્તુળાકર પથની ત્રિજ્યાં વિધેય તરીકે ઉર્જાનો ફેરફાર. . . . . . . દ્વારા સાચી રીતે રજૂ કરી શાકાય
સમાન વિદ્યુતભારતી ગોળીય કવચના $q_1$ અને $q_2$ ખંડને લીધે $P$ બિંદુ આગળ ચોખ્ખું વિદ્યુતક્ષેત્ર ...... છે. $( C $ એ કવચનું કેન્દ્ર આપેલ છે.$)$
બે મોટી, પાતળી ધાતુની પ્લેટો એકબીજાની નજીક અને સમાંતર છે. તેમની અંદરની બાજુઓ પર વિરૂદ્ધ ચિહ્નો ધરાવતી અને $17.0\times 10^{-22}\; C/m^2$ મૂલ્યની વિદ્યુતભારની પૃષ્ઠઘનતા છે. $(a)$ પ્રથમ પ્લેટની બહારના વિસ્તારમાં $(b)$ બીજી પ્લેટની બહારના વિસ્તારમાં અને $(c)$ બંને પ્લેટોની વચ્ચેના વિસ્તારમાં વિદ્યુતક્ષેત્ર $E$ શોધો.