दो आवेशित अवरोधी गोलाकारों की त्रिज्या क्रमश: $20\,cm$ और $25\,cm$ है और दोनों पर समान वैद्युत आवेश $Q$ है। इन्हेंं तांबे के तार के साथ संयोजित किया गया है
दोनों गोलाकारों पर समान आवेश होगा
$20\, cm$ त्रिज्या के गोलाकार पर आवेश, $25\, cm$ त्रिज्या वाले की अपेक्षा अधिक होगा
$ 25\, cm$ त्रिज्या वाले गोलाकार पर आवेश, $20\, cm$ त्रिज्या के गोलाकार की तुलना में अधिक होगा
प्रत्येक गोलाकार पर $2Q$ वैद्युत आवेश है
$L$ भुजा व $O$ केन्द्र वाले एक समबाहु षट्भुज के कोनों पर $6$ बिन्दु-आवेश चित्र में दर्शाये अनुरूप रखे है। $K =\frac{1}{4 \pi \varepsilon_0} \frac{ q }{ L ^2}$ को मानकर निर्धारित करें कि कौन प्रकथन सही है/हैं
$(A)$ $O$ पर विधुत क्षेत्र $6 K$ व $O D$ दिशा में है।
$(B)$ $O$ पर विभव शून्य है।
$(C)$ लाइन $PR$ पर सब जगह विभव समान है।
$(D)$ लाइन $ST$ पर सब जगह विभव समान है।
$2 \,cm$ त्रिज्या की $64$ सर्वसम बूँदों में प्रत्येक पर ${10^{ - 9}}\,C$ आवेश रखा जाता है। अब उन्हें संयुक्त कर एक बड़ी बूँद बनायी जाती है। इसका विभव ज्ञात कीजिए
दो बड़ी ऊर्ध्वाधर (vertocal) व संमातर धातु प्लेटों के बीच $1 \ cm$ की दूरी है। वे $X$ विभंवातर के $D C$ स्त्रोत से जुड़ी हैं। दोनों प्लेंटो के मध्य एक प्रोटॉन को स्थिर- अवस्था में छोड़ा जाता है। छोड़े जाने के तुरंत बाद प्रोटॉन ऊर्ध्व से $45^{\circ}$ कोण बनाता हुआ गति करता है। तब $X$ का मान लगभग है :
आवेश $Q$ को तीन समकेन्द्रीय तथा त्रिज्या $a, b, c$ $( a < b < c )$ के गोलाकार कोशों पर इस तरह वितरित किया है कि तीनों पर क्षेत्रीय घनत्व बराबर है। कोशों के केन्द्र से दूरी $r\,<\,a$ पर स्थित एक बिन्दु पर कुल विभव का मान होगा?
$q$ परिमाण के दो विपरीत आवेश एक दूसरे से $2d$ दूरी पर रखे हैं। उनके बीच मध्य बिन्दु पर विभव होगा