Gujarati
Hindi
4-1.Newton's Laws of Motion
normal

Two masses $m_1 = 5\, kg$ and $m_2 = 4.8\, kg$ tied to a string are hanging over a light  frictionless pulley. ............ $m/s^2$ is the acceleration of the masses when they  are free to move . $(g = 9.8\, m/s^2)$

A

$0.2$

B

$9.8 $

C

$5$

D

$4.8$

Solution

On release, the motion of the system will be according to the figure. $\mathrm{m}_{1} \mathrm{g}-\mathrm{T}=\mathrm{m}_{1} \mathrm{a} \ldots \ldots$ $(i)$ and

$\mathrm{T}-\mathrm{m}_{2} \mathrm{g}=\mathrm{m}_{2} \mathrm{a} \ldots \ldots$ $(ii)$

On solving$:$

$\mathrm{a}=\left(\frac{\mathrm{m}_{1}-\mathrm{m}_{2}}{\mathrm{m}_{1}+\mathrm{m}_{2}}\right) \mathrm{g} \ldots \ldots \ldots$ (iii)

Here, $m_{1}=5 \mathrm{kg}, \mathrm{m}_{2}=4.8 \mathrm{kg}, \mathrm{g}=9.8 \mathrm{m} / \mathrm{s}^{2}$

$a=\left(\frac{5-4.8}{5+4.8}\right) \times 9.8$

$=\frac{0.2}{9.8} \times 9.8$

$=0.2 \mathrm{m} / \mathrm{s}^{2}$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.