$+8q$ तथा $ - 2q$ के दो बिन्दु आवेश क्रमश: $x = 0$ तथा $x = L$ पर स्थित हैं। $x$-अक्ष पर उस बिन्दु की स्थिति जहां इन आवेशों के कारण नेट विद्युत क्षेत्र शून्य है, क्या है
$8 L$
$4 L$
$2 L$
$\frac{L}{4}$
समान त्रिज्याओं के दो गोलाकार चालकों $B$ एवं $C$ पर आवेश की मात्रा समान है तथा उन्हें एक-दूसरे से कुछ दूर रखने पर उनके बीच लगने वाला प्रतिकर्षण बल $F$ है । उतनी ही त्रिज्या वाले एक अन्य अनावेशित चालक का संपर्क पहले $B$ से कराते हैं और फिर $C$ से संपर्क कराकर उसे हटा दिया जाता है । $B$ तथा $C$ के बीच लगने वाला बल अब कितना होगा
दो स्थिर इलेक्ट्रॉनों, जिनके बीच की दूरी $'2d'$ है, के बीच इन्हें मिलाने वाली रेखा के मध्यबिन्दु पर तीसरा आवेश प्रोटॉन रखा है। इस प्रोटॉन को किसी लघु दूरी $x ( x < d )$ तक दोनों इलेक्ट्रॉनों को मिलाने वाली रेखा के लम्बवत् विस्थापित किया गया है। इसके कारण यह प्रोटॉन सरल आवर्त गति करने लगता है, जिसकी कोणीय आवत्ति होती है: $( m =$ आवेशित कण की संहति $)$
लम्बाई $ a$ के एक वर्ग के चारों कोनों $A,\,B,\,C,\,D$ पर समान आवेश $q$ रखे हैं। $D$ पर रखे हुए आवेश पर लगने वाले बल का परिमाण होगा
अनंत बिन्दु आवेशों, जिनमें प्रत्येक पर $1\, \mu \,C$ का आवेश है। को $y$-अक्ष के अनुदिश $y =1 \,m , 2\,m$, $4\, m , 8\, m \ldots$ रखा गया है। मूलबिन्दु पर रखे $1\, C$ बिन्दु आवेश पर लगने वाला कुल बल $x\, \times 10^{3}\, N$ है। यहाँ $x$ का मान निकटतम पूर्णांक $......$ होगा। $\left[\frac{1}{4 \pi \epsilon_{0}}=9 \times 10^{9} \,N\,m ^{2} / C ^{2}\right.$ लीजिए । $]$
दो बिन्दु आवेश (प्रत्येक $Q$ ) को $d$ दूरी पर रखा गया है। एक तीसरे बिन्दु आवेश $q$ को मध्य बिन्दु से लंब समद्विभाजक पर $x$ दूरी पर रखा गया है। $x$ का मान क्या हो जिस पर आवेश $q$ पर अधिकतम कूलॉम बल लगे: