$+q$ અને $-q$ મૂલ્યના બે બિંદુવત વિધુતભારો અનુક્રમે $\left( { - \frac{d}{2},0,0} \right)$ અને $\left( {\frac{d}{2},0,0} \right)$ બિંદુએ મૂકેલા છે જ્યાં સ્થિતિમાન શૂન્ય હોય તે માટે સમસ્થિતિમાન પૃષ્ઠનું સમીકરણ શોધો.
આાકૃતિમાં બતાવ્યા આનુસાર ઉદગમથી $x$ અંતરે જરૂરી સમતલ આવેલું છે.
$P$બિંદુ પાસે સ્થિતિમાન,
$\frac{k q}{\left[\left(x+\frac{d}{2}\right)^{2}+h^{2}\right]^{1 / 2}}-\frac{k q}{\left[\left(x-\frac{d}{2}\right)^{2}+h^{2}\right]^{1 / 2}}=0$
$\therefore \frac{1}{\left[\left(x+\frac{d}{2}\right)^{2}+h^{2}\right]^{1 / 2}}=\frac{1}{\left[\left(x-\frac{d}{2}\right)^{2}+h^{2}\right]^{1 / 2}}$
$\therefore \left(x-\frac{d}{2}\right)^{2}+h^{2}=\left(x+\frac{d}{2}\right)^{2}+h^{2}$
$\therefore x^{2}-x d+\frac{d^{2}}{4}=x^{2}+x d+\frac{d^{2}}{4}$
$\therefore 0=2 x d$
$\therefore x=0$
જે જરૂરી સમતલનું સમીકરણ છે.આ સમતલ $x=0$પર છે એટલે કે $yz-$સમતલમાં છે.
નીચે બે વિધાનો આપેલા છે. એકને કથન $(A)$ અને બીભને કારણ $(R)$ થી દર્શાવામાં આવે છે.
કથન $(A)$: સમસ્થિતિમાન પૃષ્ઠ પરથી ધન વિદ્યુતભારને દૂર કરવા કરવું પડતું કાર્ય શૂન્ય હોય છે.
કારણ $(R)$: વિદ્યુત બળ રેખાઓ સમસ્થિતિમાન પૃષ્ઠે હંમેશા લંબ હોય છે.
ઉપરોક્ત વિધાનોનાં સંદર્ભમાં, નીચે આપેલા વિકલપોમાંથી સૌથી યોગ્ય ઉત્તર પસંદ કરો.
નીચેની આકૃતિમાં સમસ્થિતિમાન વિસ્તાર દર્શાવેલ છે. આકૃતિમાં ઘન વીજભારને $A$ થી $B$ લઇ જવા માટે ...
નીચેનામાંથી કઈ આકૃતિ બે ધન વિદ્યુતભારના તંત્રની યોગ્ય સમસ્થિતિમાન સપાટી દર્શાવે છે?
નીચેના કિસ્સાઓ માટે સમસ્થિતિમાન પૃષ્ઠો રેખાકૃતિ દ્વારા દર્શાવો.
$(a)$ $z$ -દિશામાં અચળ વિદ્યુતક્ષેત્ર
$(b)$ ક્ષેત્ર કે જેનું માન નિયમિત રીતે વધે છે પરંતુ અચળ દિશામાં (દા.ત.$z$ -દિશા) રહે છે.
$(c)$ ઉગમબિંદુએ એકલ ધન વિદ્યુતભાર.
$(d)$ સમતલમાં સમાંતર અને સમાન અંતરે રહેલા લાંબા વિદ્યુતભારિત તારથી બનેલ નિયમિત જાળી.
વિદ્યુતબળ રેખાઓ અને સમસ્થિતિમાન પૃષ્ઠ વચ્ચેનો કોણ $......$ હશે.