Two point charges placed at a distance $r$ in air experience a certain force. Then the distance at which they will experience the same force in a medium of dielectric constant $K$ is
$\frac{r}{K}$
$Kr$
$\frac{r}{\sqrt K}$
$r \sqrt K$
A parallel plate capacitor with air between the plates has a capacitance of $9\, pF$. The separation between its plates is $'d'$. The space between the plates is now filled with two dielectrics. One of the dielectrics has dielectric constant $K_1=3$ and thickness $\frac{d}{3}$ while the other one has dielectric constant $K_2 = 6$ and thickness $\frac{2d}{3}$. Capacitance of the capacitor is now....$pF$
Two point charges $+8q$ and $-2q$ are located at $x = 0$ and $x = L$ respectively. The location of a point on the $x-$ axis at which net electric field due to these two point charges is zero, is
In the circuit, shown in the figure, the effective capacitance between $A$ and $B$ is......$\mu F$
Electric flux through surface $s_1$ :-
In steady state heat conduction, the equations that determine the heat current $j ( r )$ [heat flowing per unit time per unit area] and temperature $T( r )$ in space are exactly the same as those governing the electric field $E ( r )$ and electrostatic potential $V( r )$ with the equivalence given in the table below.
Heat flow | Electrostatics |
$T( r )$ | $V( r )$ |
$j ( r )$ | $E ( r )$ |
We exploit this equivalence to predict the rate $Q$ of total heat flowing by conduction from the surfaces of spheres of varying radii, all maintained at the same temperature. If $\dot{Q} \propto R^{n}$, where $R$ is the radius, then the value of $n$ is