Two points $P$ and $Q$ are maintained at the potentials of $10\, V$ and $-4\,V$, respectively. The work done in moving $100$ electrons from $P$ and $Q$ is

  • A

    $-9.60\times10^{-17}\, J$

  • B

    $9.60\times10^{-17}\, J$

  • C

    $-2.24\times10^{-16}\, J$

  • D

    $2.24\times10^{-16}\, J$

Similar Questions

A proton and an anti-proton come close to each other in vacuum such that the distance between them is $10 \,cm$. Consider the potential energy to be zero at infinity. The velocity at this distance will be ........... $\,m / s$

  • [KVPY 2020]

A bullet of mass $2\, gm$ is having a charge of $2\,\mu C$. Through what potential difference must it be accelerated, starting from rest, to acquire a speed of $10\,m/s$

  • [AIPMT 2004]

In moving from $A$ to $B$ along an electric field line, the electric field does $6.4 \times {10^{ - 19}}\,J$ of work on an electron. If ${\phi _1},\;{\phi _2}$ are equipotential surfaces, then the potential difference $({V_C} - {V_A})$ is.....$V$

Obtain equation of electric energy of a single charge.

Three charges $Q,\, + q$ and $ + q$ are placed at the vertices of a right-angled isosceles triangle as shown. The net electrostatic energy of the configuration is zero if $Q$ is equal to

  • [IIT 2000]