- Home
- Standard 12
- Physics
$2a$ બાજુવાળા ચોરસની એક બાજુના છેડાઓ આગળ $'q'$ મૂલ્યનો બે ધન વિદ્યુતભારો મૂકેલા છે. બે સમાન મૂલ્યના ઋણ વિદ્યુતભારોને બીજા ખૂણાઓ પર મૂકેલા છે. સ્થિર સ્થિતિથી શરૂ કરીને જો વિદ્યુતભાર $Q$ એ બાજુના $1$ ના મધ્યબિંદુએથી ચોરસના કેન્દ્ર સુધી ગતિ કરે તો ચોરસના કેન્દ્ર આગળ તેની ગતિ ઊર્જા ........ છે.
$\frac{1}{{4\pi \,\,{ \varepsilon_{0}}}}\,\frac{{2qQ}}{a}\,\left( {1\,\, - \,\frac{1}{{\sqrt 5 }}} \right)$
$zero$
$\frac{1}{{4\pi \,\,{ \varepsilon_{0}}}}\,\frac{{2qQ}}{a}\,\,\left( {1\,\, + \,\,\frac{1}{{\sqrt 5 }}} \right)$
$\frac{1}{{4\pi \,\,{\varepsilon_{0}}}}\,\frac{{2qQ}}{a}\,\left( {1\,\, - \,\frac{2}{{\sqrt 5 }}} \right)$
Solution

Initial potential of the charge,
$V_{A}=\frac{2 k q}{a}-\frac{2 k q}{a \sqrt{5}}$
$\Rightarrow V_{A}=\frac{1}{4 \pi E} \frac{2 q}{a}\left(1-\frac{1}{\sqrt{5}}\right)$
(Here potential due to each $q=\frac{k q}{a}$ and potential due to each $-q=\frac{-k q}{a \sqrt{5}}$)
Final potential of the charge
$V_{B}=0$
( $\because$ Point $B$ is equidistant from all the four charges)
$\therefore$ Using work energy theorem,
$\left(W_{A B}\right)_{\text {electric }}=Q\left(V_{A}-V_{B}\right)$
$=\frac{2 q Q}{4 \pi E_{0} a}\left[1-\frac{1}{\sqrt{5}}\right]$
$=\left(\frac{1}{4 \pi \varepsilon_{0}}\right) \frac{2 Q q}{a}\left[1-\frac{1}{\sqrt{5}}\right]$