- Home
- Standard 12
- Physics
13.Nuclei
medium
Two radioactive samples $A$ and $B$ have half lives $T_1$ and $T_2\left(T_1 > T_2\right)$ respectively At $t=0$, the activity of $B$ was twice the activity of $A$. Their activity will become equal after a time
A
$\frac{T_1 T_2}{T_1-T_2}$
B
$\frac{T_1-T_2}{2}$
C
$\frac{T_1+T_2}{2}$
D
$\frac{T_1 T_2}{T_1+T_2}$
Solution
(a)
$2 R_A=R_B$
$2 \lambda_1 N_1=\lambda_2 N_2 \quad \dots (i)$
Radio-activity is same after say time $t$
$\lambda_1 N_1 e^{-\lambda_1 t}=\lambda_2 N_2 e^{-\lambda_2 t} \quad \dots (ii)$
Dividing $(i)$ by $(ii)$
$2 e^{\lambda_1 t}=e^{\lambda_2 t}$
$2=e^{\left(\lambda_2-\lambda_1\right) t}$
Taking In on both sides
$0.693=\left(\lambda_2-\lambda_1\right) t$
$1=\left(\frac{1}{T_2}-\frac{1}{T_1}\right) t$
$\frac{T_2 T_1}{T_1-T_2}=t$
Standard 12
Physics
Similar Questions
medium