$R _{1}=100 \pm 3$ ओम व $R_{2}=$ $200 \pm 4$ ओम के दो प्रतिरोधकों को $(a)$ श्रेणी क्रम में, $(b)$ पाश्व क्रम में संयोजित किया गया है। $(a)$ श्रेणी क्रम संयोजन तथा $(b)$ पाश्व क्रम संयोजन में तुल्य प्रतिरोध ज्ञात कीजिए। $(a)$ के लिए संबंध $R=R_{1}+R_{2}$ एवं $(b)$ के लिए $\frac{R}{R^{2}} \frac{R_{1}}{R_{1}^{2}} \frac{R_{2}}{R_{2}^{2}}$ का उपयोग कीजिए।
$(a)$ The equivalent resistance of serles combination
$R=R_{1}+R_{2}=(100 \pm 3)$ $ohm$ $+(200 \pm 4)$ $ohm$
$=300 \pm 7 \text { ohm. }$
$(b)$ The equivalentl resistance of parallel combination
$R^{\prime}=\frac{R_{1} R_{2}}{R_{1}+R_{2}}=\frac{200}{3}=66.7$ $ohm$
Then, from $\frac{1}{R^{\prime}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}$
we get,
$\frac{\Delta R^{\prime}}{R^{2}}=\frac{\Delta R_{1}}{R_{1}^{2}}+\frac{\Delta R_{2}}{R_{2}^{2}}$
$\Delta R^{\prime}=\left(R^{2}\right) \frac{\Delta R_{1}}{R_{1}^{2}}+\left(R^{2}\right) \frac{\Delta R_{2}}{R_{2}^{2}}$
$=\left(\frac{66.7}{100}\right)^{2} 3+\left(\frac{66.7}{200}\right)^{2} 4$
$=1.8$
Then, $R^{\prime}=66.7 \pm 1.8$ $ohm$
(Here, $\Delta R$ is expresed as $1.8$ instead of $2$ to keep in confirmity with the rules of stgnificant figures.
घन की आकृति वाले किसी पदार्थ का घनत्व, उसकी तीन भुजाओं एवं द्रव्यमान को माप कर, निकाला जाता है। यदि द्रव्यमान एवं लम्बाई कों मापने में सापेक्ष त्रुटियाँ क्रमशः $1.5 \%$ तथा $1 \%$ हो तो घनत्व को मापने में अधिकतम त्रुटि ......... $\%$ होगी
कोई भौतिक राशि $P$. चार प्रेक्षण-योग्य राशियों $a.b . c$ तथा $d$ से इस प्रकार संबधित है | $P \quad a^{3} b^{2} / \sqrt{c} d$ $a, b, c$ तथा $d$ के मापने में प्रतिशत त्रुटियां क्रमश: $1 \% .3 \% .4 \% .$ तथा $2 \% .$ हैं । राशि $P$ में प्रतिशत त्रुटि कितनी है ? यदि उपर्युक्त संबंध का उपयोग करके $P$ का परिकलित मान $3.763$ आता है, तो आप परिणाम का किस मान तक निकटन करेंगे ?
एक प्रयोग में, एक पिंड के द्रव्यमान को एक ज्ञात बल लगा कर और इससे उत्पन्न त्वरण को माप कर ज्ञात किया जाता है । यदि प्रयोग में लगाए गए बल एवं मापे गए त्वरण का मान क्रमश: $10.0 \pm 0.2 \,N$ एवं $1.00 \pm 0.01 \,m / s ^2$ है, तो पिंड का द्रव्यमान ............. $kg$ होगा:
एक वृतीय गोले के पृष्ठ क्षेत्रफल के मापन में सापेक्ष त्रुटि $\alpha$ पायी गयी। उसी गोले के आयतन के मापन मं सापेक्ष त्रुटि होगी
एक सरल लोलक की लम्बाई का मान $2 \mathrm{~mm}$ शुद्धता के साथ $20 \mathrm{~cm}$ मापा जाता है। $50$ दोलनों के लिए $1$ सेंकड शुद्धता के साथ मापा समय $40$ सेंकड है। इस माप से गुरूत्वीय त्वरण के मापन की शुद्धता $\mathrm{N} \%$ है। $\mathrm{N}$ का मान है :