Gujarati
1. Electric Charges and Fields
hard

$m_1$ एवं $m_2$ द्रव्यर्मान की धातु की दो छोटी गेंदे, एक ही लंबाई के धागे से किसी एक बिन्दु से लटकी है। जब गेंदों को एक समान आवेशित किया जाता है तब ऊर्ध्व के सापेक्ष दोनों धागे क्रमश: $30^{\circ}$ एवं $60^{\circ}$ कोण बनाते हैं। अनुपात $m_1 / m_2$ क्या होगा?

A

$2.0$

B

$3.0$

C

$0.58$

D

$1.7$

(KVPY-2015)

Solution

(d)

Each ball is in equilibrium under three forces.

$(i)$ Electrostatic repulsion force $F_e$, equal on both balls along line joining centre to centre of balls.

$(ii)$ Weight $m_1 g$ and $m_2 g$, different on each ball vertically downwards through centre of ball.

$(iii)$ Tensions $T_1$ and $T_2$, different on each ball along the string.

As, angle between strings is given $30^{\circ}+60^{\circ}=90^{\circ}$ and strings are of equal

length, strings forms an isosceles triangle as shown below,

Now, using Lami's theorem for ball $1$ and ball $2$ , we have

$\frac{F_e}{\sin 150^{\circ}}=\frac{m_1 g}{\sin 135^{\circ}} \text { (For ball 1) }$

$\text { and } \frac{F_e}{\sin 120^{\circ}} =\frac{m_2 g}{\sin 135^{\circ}}(\text { For ball 2) }$

Dividing these equations, we get

$\frac{\sin 120^{\circ}}{\sin 150^{\circ}}=\frac{m_1}{m_2}$

$\Rightarrow \quad \frac{m_1}{m_2} =\frac{\sin \left(180^{\circ}-60^{\circ}\right)}{\sin \left(180^{\circ}-30^{\circ}\right)}$

$=\frac{\sin 60^{\circ}}{\sin 30^{\circ}}=\frac{\sqrt{3} / 2}{1 / 2}=\sqrt{3}$

So, $\quad \frac{m_1}{m_2} \approx 1.73$

Standard 12
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.