$4$ सेमी और $6$ सेमी की त्रिज्या के दो गोलों $A$ और $B$ को क्रमश: $80\,\mu C$ और $40\,\mu C$ आवेश दिया जाता है। इन दोनों को पतले तार से जोड़ा जाता है तो एक गोले से आवेश दूसरे गोले को जावेगा
$A$ से $B$ की ओर $20\,\mu C$
$A$ से $B$ की ओर $16\,\mu C$
$B$ से $A$ की ओर $32\,\mu C$
$A$ से $B$ की ओर $32\,\mu C$
दो आवेश एक दूसरे से $‘d’$ दूरी पर है। यदि दोनों के मध्य $\frac{d}{2}$ मोटाई की तांबे की प्लेट रख दें तो प्रभावी बल होगा
दो विध्युतरोधी आवेशित ताँबे के गोलों $A$ तथा $B$ के केंद्रों के बीच की दूरी $50 \,cm$ है। यद् दोनों गोलों पर पृथक-पृथक आवेश $6.5 \times 10^{-7} C$ हैं, इसी साइज का कोई तीसरा अनावेशित गोला पहले तो पहले गोले के संपर्क, तत्पश्चात दूसरे गोले के संपर्क में लाकर, अंत में दोनों से ही हटा लिया जाता है। अब $A$ तथा $B$ के बीच नया प्रतिकर्षण बल कितना है?
द्रव्यमान $1\, mg$ और आवेश $q$ का कोई कण, एक दूसरे से $2\, m$ दूरी पर स्थित दो स्थिर आवेशों जिनमें प्रत्येक का आवेश $q$ है, के मध्यबिन्दु पर स्थित है। यदि मध्य बिन्दु स्थित कण मुक्त आवेश को अपनी साम्य स्थिति से किसी दूरी $'x'$ $( x \,<\,1 \,m )$ तक विस्थापित करे, तो यह कण सरल आवर्त गति करने लगता है। इसके दोलन की कोणीय आवत्ति $.........\,\times 10^{8}\, rad / s$ होगी यदि $q ^{2}=10 \,C ^{2}$ ।
जब इलेक्ट्रॉन और प्रोटॉन के बीच $1.6 \,\dot{A}$ की दूरी है, तो उन दोनों के बीच अन्योन्य आकर्षण के कारण इलेक्ट्रॉन का त्वरण होता है,
$\left(m_{e} \simeq 9 \times 10^{-31}\, kg , \quad e=1.6 \times 10^{-19}\, C \right)$
(लीजिए $\left.\frac{1}{4 \pi \epsilon_{0}}=9 \times 10^{9}\, N\,m ^{2}\, C ^{-2}\right)$
$5 \times {10^{ - 11}}\,C$ एवं $ - 2.7 \times {10^{ - 11}}\,C$ के दो आवेश एक दूसरे से $0.2$ मीटर की दूरी पर स्थित हैं। इन दोनों को जोड़ने वाली रेखा पर एक तीसरा आवेश $ - 2.7 \times {10^{ - 11}}\,C$ से कितनी ......मीटर दूरी पर रखा जाये कि उस पर कार्यरत कुल बल शून्य हो