Two small spherical balls each carrying a charge $Q = 10\,\mu C$ ($10$ micro-coulomb) are suspended by two insulating threads of equal lengths $1\,m$ each, from a point fixed in the ceiling. It is found that in equilibrium threads are separated by an angle ${60^o}$ between them, as shown in the figure. What is the tension in the threads......$N$ (Given: $\frac{1}{{(4\pi {\varepsilon _0})}} = 9 \times {10^9}\,Nm/{C^2}$)

110-126

  • A

    $18$

  • B

    $1.8$

  • C

    $0.18$

  • D

    None of the above

Similar Questions

A charge $q$ is placed at the centre of the line joining two equal charges $Q$. The system of the three charges will be in equilibrium, if $q$ is equal to

  • [AIEEE 2002]

The radius of two metallic spheres $A$ and $B$ are ${r_1}$ and ${r_2}$ respectively $({r_1} > {r_2})$. They are connected by a thin wire and the system is given a certain charge. The charge will be greater

Two charges, each equal to $q$, are kept at $x = -a$ and $x = a$ on the $x-$axis. A particle of mass $m$ and charge $q_0=\frac{q}{2}$ is placed at the origin. If charge $q_0$ is given a small displacement $(y < < a)$ along the $y-$axis, the net force acting on the particle is proportional to

  • [JEE MAIN 2013]

Given below are three schematic graphs of potential energy $V(r)$ versus distance $r$ for three atomic particles : electron $\left(e^{-}\right)$, proton $\left(p^{+}\right)$and neutron $(n)$, in the presence of a nucleus at the origin $O$. The radius of the nucleus is $r_0$. The scale on the $V$-axis may not be the same for all figures. The correct pairing of each graph with the corresponding atomic particle is

  • [KVPY 2011]

Two similar spheres having $ + \,q$ and $ - \,q$ charge are kept at a certain distance. $F$ force acts between the two. If in the middle of two spheres, another similar sphere having $ + \,q$ charge is kept, then it experience a force in magnitude and direction as