Two species of radioactive atoms are mixed in equal number. The disintegration constant of the first species is $\lambda$ and of the second is $\lambda / 3$. After a long time the mixture will behave as a species with mean life of approximately
$0.70 / \lambda$
$2.10 / \lambda$
$1.00 / \lambda$
$0.52 / \lambda$
A ${\pi ^0}$ at rest decays into $2\gamma $ rays ${\pi ^0} \to \gamma + \gamma $. Then which of the following can happen
Following statements related to radioactivity are given below
$(A)$ Radioactivity is a random and spontaneous process and is dependent on physical and chemical conditions.
$(B)$ The number of un-decayed nuclei in the radioactive sample decays exponentially with time.
$(C)$ Slope of the graph of $\log _{e}$ (no. of undecayed nuclei) $Vs$. time represents the reciprocal of mean life time $(\tau)$.
$(D)$ Product of decay constant ( $\lambda$ ) and half-life time $\left(T_{1 / 2}\right)$ is not constant.
Choose the most appropriate answer from the options given below
The graph which represents the correct variation of logarithm of activity $(log\, A)$ versus time, in figure is
Half lives for $\alpha$ and $\beta$ emission of a radioactive material are $16$ years and $48$ years respectively. When material decays giving $\alpha$ and $\beta$ emission simultaneously then time in which $\frac{3}{4}$ th of the material decays is ....... years
Define $SI$ unit of radioactivity ?