Two spherical conductors $B$ and $C$ having equal radii and carrying equal charges in them repel each other with a force $F$ when kept apart at some distance. A third spherical conductor having same radius as that of $B$ but uncharged is brought in contact with $B$, then brought in contact with $C$ and finally removed away from both. The new force of repulsion between $B$ and $C$ is
$F/4$
$3F/4$
$F/8$
$3F/8$
Two charges each of magnitude $Q$ are fixed at $2a$ distance apart. A third charge ($-q$ of mass $'m'$) is placed at the mid point of the two charges; now $-q$ charge is slightly displaced perpendicular to the line joining the charges then find its time period
Two charges $q$ and $-3q$ are placed fixed on $x-axis$ separated by distance $'d'$. Where should a third charge $2q$ be placed such that it will not experience any force ?
Two charges each of $1\;coulomb$ are at a distance $1\,km$ apart, the force between them is
Two small spheres each of mass $10 \,mg$ are suspended from a point by threads $0.5 \,m$ long. They are equally charged and repel each other to a distance of $0.20 \,m$. The charge on each of the sphere is $\frac{ a }{21} \times 10^{-8} \, C$. The value of $a$ will be ...... .
$\left[\right.$ Given $\left.g=10 \,ms ^{-2}\right]$
Four point $+ve$ charges of same magnitude $(Q)$ are placed at four corners of a rigid square frame as shown in figure. The plane of the frame is perpendicular to $Z$ axis. If a $-ve$ point charge is placed at a distance $z$ away from the above frame $(z<< L)$ then