समान त्रिज्याओं के दो गोलाकार चालकों $B$ एवं $C$ पर आवेश की मात्रा समान है तथा उन्हें एक-दूसरे से कुछ दूर रखने पर उनके बीच लगने वाला प्रतिकर्षण बल $F$ है । उतनी ही त्रिज्या वाले एक अन्य अनावेशित चालक का संपर्क पहले $B$ से कराते हैं और फिर $C$ से संपर्क कराकर उसे हटा दिया जाता है । $B$ तथा $C$ के बीच लगने वाला बल अब कितना होगा
$F/4$
$3F/4$
$F/8$
$3F/8$
दो ताँबे की गेंदें, प्रत्येक का भार $10\, gm$ है। एक दूसरे से वायु में $10\,cm$ दूर रखी हैं। यदि प्रत्येक ${10^6}$ परमाणुओं से एक इलेक्ट्रॉन एक गेंद से दूसरी गेंद की ओर स्थानान्तरित होता है। इनके मध्य कूलॉम बल है। (ताँबे का परमाणु भार $63.5$ है)
$5\,\mu C , 0.16\,\mu C$ और $0.3\,\mu C$ परिमाण के तीन बिन्दु आवेश, एक समकोण त्रिभुज के कोनों $A , B$ और $C$ पर क्रमश: रखें है, जिसकी भुजाऐं $AB =3\,cm$, $BC =3 \sqrt{2}\,cm$ और $CA =3\,cm$ है, एवं $A$ बिन्दु उसके समकोण वाले कोने पर है। बिन्दु $A$ पर रखा आवेश, बाकी दो आवेशों के कारण $.......N$ के स्थिर वैद्युत बल का अनुभव
एक $10 \mu \mathrm{C}$ आवेश दो भागों में विभाजित किया जाता है तथा $1 \mathrm{~cm}$ की दूरी पर रख दिया जाता है ताकि इसके बीच प्रतिकर्षण बल अधिकतम हो। दोनों भागों के आवेश है:
दो समान आवेश $Q$ परस्पर कुछ दूरी पर रखे हैं इनको मिलाने वाली रेखा के केन्द्र पर $q$ आवेश रखा गया है। तीनों आवेशों का निकाय सन्तुलन में होगा यदि $q$ का मान हो
दो एकसमान धनावेश $Q$, एक दूसरे से ' $2\,a$ ' दूरी पर स्थिर किए गए हैं। दोनों स्थिर आवेशों के मध्य बिन्दु पर, किसी अन्य ' $m$ ' द्रव्यमान के आवेश $q _0$ को रखा जाता है। दोनों स्थिर आवेशों को जोड़ने वाली रेखा के अनुदिश एक लघु विस्थापन के कारण आवेश $q _0$ सरल आवर्त गति करने लगता है। आवेश $q _0$ के दोलनों का आवर्तकाल होगा :