Gujarati
6.System of Particles and Rotational Motion
normal

चित्रानुसार $R$ त्रिज्या के दो गोलक जिनके द्रव्यमान $m_1$ और $m_2$ है, $L$ लंबाई के दो रस्सियों से लटके हुए हैं $(R < < L)$ । उध्र्व के परिपेक्ष्य में $m_2$ जो $\theta$ कोण बनाती है, उसका मान निम्न होगा

A

$\frac{m_1 R}{\left(m_1+m_2\right) L}$

B

$\frac{2 m_1 R}{\left(m_1+m_2\right) L}$

C

$\frac{2 m_2 h}{\left(m_1+m_2\right) L}$

D

$\frac{m_2 R}{\left(m_1+m_2\right) L}$

(KVPY-2015)

Solution

(b)

Given arrangement of spheres is as shown below.

Free body diagram of spheres is

As, there is no rotation about point of contact $P$.

Equating moments of weights about centre line, we get

$\quad m_1 g \times r_1=m_2 g \times r_2$

$\text { where, } r_1+r_2=2 R$

$\Rightarrow \quad \frac{m_2 r_2+r_2=2 R}{m_1}$

$\Rightarrow \quad r_2\left(\frac{m_2+m_1}{m_1}\right)=2 R \Rightarrow r_2=\frac{2 m_1 R}{m_1+m_2}$

Now, if angle made by string of $m_2$ with vertical line is $\theta$, then

$\sin \theta=\frac{r_2}{L} \Rightarrow \sin \theta=\left(\frac{2 m_1}{m_1+m_2}\right)\left(\frac{R}{L}\right)$

As $R \ll L$, angle $\theta$ is small, therefore $\sin \theta \approx \theta$.

$\therefore \quad \theta=\frac{2 m_1 R}{\left(m_1+m_2\right) L}$

 

Standard 11
Physics

Similar Questions

एक निर्देश तंत्र जो एक जड़त्वीय निर्देश तंत्र की तुलना में त्वरित हो, अजड़त्वीय निर्देश तंत्र कहलाता है। स्थिर कोणीय वेग $\omega$ से घूमती हुई डिस्क पर बद्ध (fixed) निर्देश तंत्र अजड़त्वीय तंत्र का एक उदाहरण है। $m$ द्रव्यमान का एक कण घूमती हुई डिस्क पर गतिमान है। गतिमान कण डिस्क पर बद्ध निर्देश तंत्र के सापेक्ष बल $\vec{F}_{\text {rot }}$ तथा एक जड़त्वीय निर्देश तंत्र के सापेक्ष बल $\vec{F}_{\text {in }}$ को महसूस करता है। $\vec{F}_{\text {rot }}$ और $\vec{F}_{\text {in }}$ के बीच का संबंध निम्नलिखित समीकरण में दिया गया है

$\vec{F}_{\text {rot }}=\vec{F}_{\text {in }}+2 m\left(\vec{v}_{\text {rot }} \times \vec{\omega}\right)+m(\vec{\omega} \times \vec{r}) \times \vec{\omega},$

यहाँ पर $\vec{v}_{\text {rot }}$ घूमते हुए निर्देश तंत्र में कण का वेग है तथा $\vec{r}$ कण का डिस्क के मध्य बिन्दु के सापेक्ष स्थिति सदिश (position vector) है।

मानिए कि $R$ त्रिज्या की एक डिस्क, जिसमें व्यास के समानान्तर एक घर्षणरहित खाँचा है, एक स्थिर कोणीय गति $\omega$ से अपने अक्ष पर वामावर्त दिशा में घूम रही है। एक निर्देश तंत्र मानिए जिसका मूलबिंदू डिस्क के मध्य बिन्दु पर है एवं $x$-अक्ष खाँचे के समानान्तर है, $y$-अक्ष खाँचे के अभिलम्ब पर है एवं $z$-अक्ष घूमने वाली अक्ष के समानान्तर है $(\vec{\omega}=\omega \hat{k}) । m$ द्रव्यमान वाले एक छोटे गुटके को समय $t=0$ पर $\vec{r}=(R / 2) \hat{i}$ बिन्दु पर धीरे से इस तरह से रखा जाता है कि वो सिर्फ खाँचे में ही चल सके।

($1$) समय $t$ पर गुटके की दूरी $r$ का मान है:

$(A)$ $\frac{R}{4}\left(e^{\omega t}+e^{-\omega t}\right)$

$(B)$ $\frac{R}{2} \cos \omega t$

$(C)$ $\frac{R}{4}\left(e^{2 \omega t}+e^{-2 \omega t}\right)$

$(D)$ $\frac{R}{2} \cos 2 \omega t$

($2$) गुटके पर डिस्क की नेट प्रतिक्रिया (net reaction) है:

$(A)$ $\frac{1}{2} m \omega^2 R\left(e^{2 \omega t}-e^{-2 \omega t}\right) \hat{j}+m g \hat{k}$

$(B)$ $\frac{1}{2} m \omega^2 R\left(e^{\omega t}-e^{-\omega t}\right) \hat{j}+m g \hat{k}$

$(C)$ $-m \omega^2 R \cos \omega t \hat{j}-m g \hat{k}$

$(D)$ $m \omega^2 R \sin \omega t \hat{j}-m g \hat{k}$

दिये गए सवाल का जवाब दीजिये ($1$) और ($2$)

normal
(IIT-2016)

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.