$k_1$ અને $k_2$ બળ-અચળાંકવાળી બે ધિંગોને શ્રેણીમાં જોડતાં પરિણામી બળ-આચળાંક $2$ એકમ મળે છે. જ્યારે તેમને સમાંતર જોડતાં પરિણામી બળ-અચળાંક $9$ એકમ મળે છે તો $k_1$ અને $k_2$ ના મૂલ્યો મેળવો.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

સમાંતર જોડાણ માટે $k_{1}+k_{2}=9\dots(1)$

શ્રેણી જોડાણ માટે $\frac{k_{1} k_{2}}{k_{1}+k_{2}}=2\dots(2)$

$\therefore \quad \frac{k_{1} k_{2}}{9}=$ સમી.$(1)$ અને $(2)$ પરથી

$\therefore \quad k_{1}+k_{2}=18\dots(3)$

$\therefore \quad k_{2}=\frac{18}{k_{1}}$ સમી.$(1)$માં મૂકતાં

$k_{1}=\frac{18}{k_{1}}=9$

$\therefore k_{1}^{2}+18=9 k_{1}$

$\therefore k_{1}^{2}-9 k_{1}+18=0$

$\therefore \left(k_{1}-6\right)\left(k_{1}-3\right)=0$

$\therefore k_{1}=6$ એકમ અથવા $k_{1}=3$એકમ

$\therefore k_{2}=3$એકમ અથવા $k_{2}=6$ એકમ 

Similar Questions

$L$ લંબાઇ અને $k$ બળઅચળાંક ઘરાવતી સ્પ્રિંગને $m$ લગાવીને સરળ આવર્તગતિ કરાવતા તેની આવર્તકાળ $T$ છે. સ્પ્રિંગને બે સમાન ભાગમાં ટુકડા કરી એક ટુકડાને $m$ દળ લટકાવીને સરળ આવર્તગતિ કરાવતા તેનો આવર્તકાળ કેટલો થાય?

આકૃતિમાં બતાવ્યા પ્રમાણે $1200\, N \,m^{-1}$ નો સ્પ્રિંગ-અચળાંક ધરાવતી એક સ્પ્રિંગને એક સમક્ષિતિજ ટેબલ પર ગોઠવેલ કરેલ છે. આ સ્પ્રિંગના મુક્ત છેડા પર $3\, kg$ જેટલું દ્રવ્યમાન જોડેલ છે. આ દ્રવ્યમાનને એક બાજુ $2.0 \,cm$ ના અંતર સુધી ખેંચીને મુક્ત કરવામાં આવે છે.

$(i)$ દોલનની આવૃત્તિ $(ii)$ દ્રવ્યમાનનો મહત્તમ પ્રવેગ અને $(ii)$ દ્રવ્યમાનની મહત્તમ ઝડપ શોધો.

સ્પ્રિંગના છેડે જોડેલ બ્લોકના દળ પર તેના દોલનનો આવર્તકાળ કેવી રીતે આધાર રાખે છે ? 

આકૃતિમાં દર્શાવ્યા અનુસાર દેઢ આધારો વચ્ચે $k$ સ્પ્રિંગ અચળાંકવાળી બે સ્પ્રિંગો સાથે $m$ દળના બ્લોકને જોડેલો છે. જ્યારે $m$ દળના બ્લોકને સંતુલન સ્થાનથી જમણી બાજુ $x$ જેટલો ખસેડવામાં આવે ત્યારે બ્લોક પર લાગતું પુનઃસ્થાપક બળ શોધો. 

આકૃતિ $(A)$ માં ‘$2\,m$’ દળને ' $m$ ' દળ ઉપર જડવામાં આવ્યો છે. $m$ દળ $k$ જેટલો સ્પ્રિંગ અચળાંક ઘરાવતી સ્પ્રિંગો સાથે જોડવામાં આવેલ છે. આકૃતિ $(B)$ માં ‘ $m$ ' દળને ' $k$ ' અને ‘ $2 k$ ' સ્ત્રિંગ અચળાંકો ઘરાવતી બે સ્પ્રિંગો સાથે જ્રેડવામાં આવેલ છે. જે $(A)$ માં દળ ' $m$ ' ને અને $(B)$ માં દળ ' $m$ ' ને ' $x$ ' અંતરે ખસેડવામાં આવે તો, $(A)$ અને $(B)$ ને અનુરૂપ આવર્તકાળ $T _1$ અને $T _2........$ સમીકરણને અનુસરશે.

  • [JEE MAIN 2022]