Two streams of photons, possessing energies to five and ten times the work function of metal are incident on the metal surface successively. The ratio of the maximum velocities of the photoelectron emitted, in the two cases respectively, will be.

  • [JEE MAIN 2022]
  • A

    $1: 2$

  • B

    $1: 3$

  • C

    $2: 3$

  • D

    $3: 2$

Similar Questions

In photoelectric effect, the electrons are ejected from metals if the incident light has a certain minimum

  • [AIIMS 2006]

Photoelectric effect experiments are performed using three different metal plates $\mathrm{p}, \mathrm{q}$ and $\mathrm{r}$ having work functions $\phi_p=2.0 \mathrm{eV}, \phi_q=2.5 \mathrm{eV}$ and $\phi_r=3.0 \mathrm{eV}$, respectively. A light beam containing wavelengths of $550 \mathrm{~nm}, 450 \mathrm{~nm}$ and $350 \mathrm{~nm}$ with equal intensities illuminates each of the plates. The correct I-V graph for the experiment is [Take $h c=1240 \mathrm{eV} \mathrm{nm}$ ]

  • [IIT 2009]

The light of two different frequencies whose photons have energies $3.8 \,eV$ and $1.4 \,eV$ respectively, illuminate a metallic surface whose work function is $0.6 \,eV$ successively. The ratio of maximum speeds of emitted electrons for the two frequencies respectivly will be

  • [JEE MAIN 2022]

By suitable example show that particle or wave nature depend on type of experiment.

In a photoemissive cell with executing wavelength $\lambda $, the fastest electron has speed $v.$ If the exciting wavelength is changed to $\frac{{3\lambda }}{4}$, the speed of the fastest emitted electron will be

  • [AIIMS 2008]