Two tangents are drawn from the point $\mathrm{P}(-1,1)$ to the circle $\mathrm{x}^{2}+\mathrm{y}^{2}-2 \mathrm{x}-6 \mathrm{y}+6=0$. If these tangents touch the circle at points $A$ and $B$, and if $D$ is a point on the circle such that length of the segments $A B$ and $A D$ are equal, then the area of the triangle $A B D$ is eqaul to:
$2$
$(3 \sqrt{2}+2)$
$4$
$3(\sqrt{2}-1)$
If a line, $y=m x+c$ is a tangent to the circle, $(x-3)^{2}+y^{2}=1$ and it is perpendicular to a line $\mathrm{L}_{1},$ where $\mathrm{L}_{1}$ is the tangent to the circle, $\mathrm{x}^{2}+\mathrm{y}^{2}=1$ at the point $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right),$ then
The line $lx + my + n = 0$ is normal to the circle ${x^2} + {y^2} + 2gx + 2fy + c = 0$, if
Circles $x^2 + y^2 + 4x + d = 0, x^2 + y^2 + 4fy + d = 0$ touch each other, if
$S_1$ and $S_2$ are two concentric circles of radii $1$ and $2$ respectively. Two parallel tangents to $S_1$ cut off an arc from $S_2$. The length of the arc is
Two circles each of radius $5\, units$ touch each other at the point $(1,2)$. If the equation of their common tangent is $4 \mathrm{x}+3 \mathrm{y}=10$, and $\mathrm{C}_{1}(\alpha, \beta)$ and $\mathrm{C}_{2}(\gamma, \delta)$, $\mathrm{C}_{1} \neq \mathrm{C}_{2}$ are their centres, then $|(\alpha+\beta)(\gamma+\delta)|$ is equal to .... .