- Home
- Standard 11
- Mathematics
Points $P (-3,2), Q (9,10)$ and $R (\alpha, 4)$ lie on a circle $C$ with $P R$ as its diameter. The tangents to $C$ at the points $Q$ and $R$ intersect at the point $S$. If $S$ lies on the line $2 x - ky =1$, then $k$ is equal to $.........$.
$3$
$6$
$9$
$12$
Solution

$m _{ PQ } \cdot m _{ QR }=-1$
$\Rightarrow \frac{10-2}{9+3} \times \frac{10-4}{9-\alpha}=-1 \Rightarrow \alpha=13$
$m _{ op } \cdot m _{ Qs }=-1 \Rightarrow m _{ Qs }=-\frac{4}{7}$
Equation of $QS$
$y-10=-\frac{4}{7}(x-9)$
$\Rightarrow 4 x+7 y=106 \ldots(1)$
$m_{O R} \cdot m_{R S}=-1 \Rightarrow m_{R S}=-8$
Equation of RS
$y-4=-8(x-13)$
$\Rightarrow 8 x+y=108$
Solving eq. $(1)$ and $(2)$
$x _1=\frac{25}{2} y _1=8$
$S \left( x _1, y _1\right)$ lies on $2 x – ky =1$
$25-8 k =1$
$\Rightarrow 8 k =24$
$\Rightarrow k =3$