Points $P (-3,2), Q (9,10)$ and $R (\alpha, 4)$ lie on a circle $C$ with $P R$ as its diameter. The tangents to $C$ at the points $Q$ and $R$ intersect at the point $S$. If $S$ lies on the line $2 x - ky =1$, then $k$ is equal to $.........$.
$3$
$6$
$9$
$12$
The line $(x - a)\cos \alpha + (y - b)$ $\sin \alpha = r$ will be a tangent to the circle ${(x - a)^2} + {(y - b)^2} = {r^2}$
The equation of circle with centre $(1, 2)$ and tangent $x + y - 5 = 0$ is
If the straight line $y = mx + c$ touches the circle ${x^2} + {y^2} - 2x - 4y + 3 = 0$ at the point $(2, 3)$, then $c =$
From any point on the circle ${x^2} + {y^2} = {a^2}$ tangents are drawn to the circle ${x^2} + {y^2} = {a^2}{\sin ^2}\alpha $, the angle between them is
If the tangent at the point $P$ on the circle ${x^2} + {y^2} + 6x + 6y = 2$ meets the straight line $5x - 2y + 6 = 0$ at a point $Q$ on the $y$- axis, then the length of $PQ$ is