Two wire $A$ and $B$ are stretched by same force. If, for $A$ and $B, Y_A: Y_B=1: 2, r_A: r_B=3: 1$ and $L_A: L_B=4: 1$, then ratio of their extension $\left(\frac{\Delta L_A}{\Delta L_B}\right)$ will be .............

  • A

    $10: 13$

  • B

    $8: 9$

  • C

    $11: 7$

  • D

    $6: 5$

Similar Questions

Two wires of diameter $0.25 \;cm ,$ one made of steel and the other made of brass are loaded as shown in Figure. The unloaded length of steel wire is $1.5 \;m$ and that of brass wire is $1.0 \;m .$ Compute the elongations of the steel and the brass wires.

An aluminum rod (Young's modulus $ = 7 \times {10^9}\,N/{m^2})$ has a breaking strain of $0.2\%$. The minimum cross-sectional area of the rod in order to support a load of ${10^4}$Newton's is

Two rods of different materials having coefficients of linear expansion ${\alpha _1},\,{\alpha _2}$ and Young's moduli ${Y_1}$ and ${Y_2}$ respectively are fixed between two rigid massive walls. The rods are heated such that they undergo the same increase in temperature. There is no bending of rods. If ${\alpha _1}:{\alpha _2} = 2:3$, the thermal stresses developed in the two rods are equally provided ${Y_1}:{Y_2}$ is equal to

  • [IIT 1989]

An elastic material of Young's modulus $Y$ is subjected to a stress $S$. The elastic energy stored per unit volume of the material is

  • [AIEEE 2005]

A rod of length $1.05\; m$ having negligible mass is supported at its ends by two wires of steel (wire $A$) and aluminium (wire $B$) of equal lengths as shown in Figure. The cross-sectional areas of wires $A$ and $B$ are $1.0\; mm ^{2}$ and $2.0\; mm ^{2}$. respectively. At what point along the rod should a mass $m$ be suspended in order to produce $(a)$ equal stresses and $(b)$ equal strains in both steel and alumintum wires.