Using that for any sets $\mathrm{A}$ and $\mathrm{B},$

$A \cup(A \cap B)=A$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

To show: $A \cup(A \cap B)=A$

We know that

$A \subset A$

$A \cap B \subset A$

$\therefore A \cup(A \cap B) \subset A$           ..........$(1)$

Also, $A \subset A \cup(A \cap B)$              ..............$(2)$

$\therefore$ From $(1)$ and $(2), A \cup(A \cap B)=A$

Similar Questions

If $A=\{3,6,9,12,15,18,21\}, B=\{4,8,12,16,20\},$ $C=\{2,4,6,8,10,12,14,16\}, D=\{5,10,15,20\} ;$ find

$A-C$

If $X=\{a, b, c, d\}$ and $Y=\{f, b, d, g\},$ find

$X \cap Y$

If $X=\{a, b, c, d\}$ and $Y=\{f, b, d, g\},$ find

$X-Y$

Find the union of each of the following pairs of sets :

$A = \{ x:x$ is a natural number and $1\, < \,x\, \le \,6\} $

$B = \{ x:x$ is a natural number and $6\, < \,x\, < \,10\} $

$A$ and $B$ are two subsets of set $S$ = $\{1,2,3,4\}$ such that $A\ \cup \ B$ = $S$ , then number of ordered pair of $(A, B)$ is