ગણના ગુણધર્મોનો ઉપયોગ કરીને સાબિત કરો કે $A \cup(A \cap B)=A$
To show: $A \cup(A \cap B)=A$
We know that
$A \subset A$
$A \cap B \subset A$
$\therefore A \cup(A \cap B) \subset A$ ..........$(1)$
Also, $A \subset A \cup(A \cap B)$ ..............$(2)$
$\therefore$ From $(1)$ and $(2), A \cup(A \cap B)=A$
$X \cup Y$ માં $50$ ઘટકો, $X$ માં $28$ ઘટકો અને $Y$ માં $32$ ઘટકો હોય તેવા બે ગણો $X$ અને $Y$ આપેલા છે, તો $X$ $\cap$ $Y$ માં કેટલા ઘટક હશે ?
જો $A=\{3,6,9,12,15,18,21\}, B=\{4,8,12,16,20\},$ $C=\{2,4,6,8,10,12,14,16\}, D=\{5,10,15,20\} ;$ તો મેળવો : $D-C$
જો બે ગણ $A$ અને $B$ આપેલ હોય તો $A \cap (B -A)$ મેળવો.
જો બે અલગ ગણો $A$ અને $B$ હોય તો $n(A \cup B)$ =
જો બે ગણો $A$ અને $B$ માટે $A \cup B = A \cap B $ થાય તોજ જ . . ..