Using the property of determinants and without expanding, Prove that 

$\left|\begin{array}{lll}x & a & x+a \\ y & b & y+b \\ z & c & z+c\end{array}\right|=0$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$\left|\begin{array}{ccc}x & a & x+a \\ y & b & y+b \\ z & c & z+c\end{array}\right|=\left|\begin{array}{ccc}x & a & x \\ y & b & y \\ z & c & z\end{array}\right|+\left|\begin{array}{ccc}x & a & a \\ y & b & b \\ z & c & c\end{array}\right|$

Clearly, the two determinants have two identical columns. Thus,

$=0+0=0$

Similar Questions

If $a,b,c$ are unequal what is the condition that the value of the following determinant is zero $\Delta = \left| {\,\begin{array}{*{20}{c}}a&{{a^2}}&{{a^3} + 1}\\b&{{b^2}}&{{b^3} + 1}\\c&{{c^2}}&{{c^3} + 1}\end{array}\,} \right|$

  • [IIT 1985]

$\left| {\,\begin{array}{*{20}{c}}1&{1 + ac}&{1 + bc}\\1&{1 + ad}&{1 + bd}\\1&{1 + ae}&{1 + be}\end{array}\,} \right| = $

The value of the determinant $\left| {\,\begin{array}{*{20}{c}}4&{ - 6}&1\\{ - 1}&{ - 1}&1\\{ - 4}&{11}&{ - 1\,}\end{array}} \right|$is

Let $A$ be a $3 \times 3$ matrix with $\operatorname{det}( A )=4$. Let $R _{ i }$ denote the $i ^{\text {th }}$ row of $A$. If a matrix $B$ is obtained by performing the operation $R _{2} \rightarrow 2 R _{2}+5 R _{3}$ on $2 A ,$ then $\operatorname{det}( B )$ is equal to ...... .

  • [JEE MAIN 2021]

Give the correct order of initials $T$ or $F$ for following statements. Use $T$ if statement is true and $F$ if it is false.

Statement $-1$ : If the graphs of two linear equations in two variables are neither parallel nor the same, then there is a unique solution to the system. Statement $-2$ : If the system of equations $ax + by = 0, cx + dy = 0$ has a non-zero solution, then it has infinitely many solutions.

Statement $-3$ : The system $x + y + z = 1, x = y, y = 1 + z$ is inconsistent. Statement $-4$ : If two of the equations in a system of three linear equations are inconsistent, then the whole system is inconsistent.