$\sum\limits_{r = 0}^{15} {\left( {{}^{15}{C_r}{}^{40}{C_{15}}{}^{20}{C_r} - {}^{35}{C_{15}}{}^{15}{C_r}{}^{25}{C_r}} \right)} $ ની કિમત મેળવો
$0$
${{}^{40}{C_{15}} - {}^{35}{C_{15}}}$
${{}^{35}{C_{15}} - {}^{40}{C_{15}}}$
$^{40}C_{15}$
$\sum_{\substack{i, j=0 \\ i \neq j}}^{n}{ }^{n} C_{i}{ }^{n} C_{j}$ ની કિમંત મેળવો.
$(2x + 1).(2x + 5) . (2x + 9) . (2x + 13)...(2x + 49),$ ના વિસ્તરણમાં $x^{12}$ નો સહગુણક મેળવો
વિધેય $\frac{1}{{\left( {1 - ax} \right)\left( {1 - bx} \right)}}$ નુ $x$ ની ધાતાકમાં વિસ્તરણ ${a_0} + {a_1}x + {a_2}{x^2} + \;{a_3}{x^3} + \; \ldots......$ હોય તો ${a_n}$ મેળવો.
જો $(1 + x) (1 + x + x^2) (1 + x + x^2 + x^3) ...... (1 + x + x^2 + x^3 + ...... + x^n)$
$\equiv a_0 + a_1x + a_2x^2 + a_3x^3 + ...... + a_mx^m$ હોય તો $\sum\limits_{r\, = \,0}^m {\,\,{a_r}}$ ની કિમત મેળવો
જો ${(1 + x)^n} = {C_0} + {C_1}x + {C_2}{x^2} + .......... + {C_n}{x^n}$, તો $\frac{{{C_1}}}{{{C_0}}} + \frac{{2{C_2}}}{{{C_1}}} + \frac{{3{C_3}}}{{{C_2}}} + .... + \frac{{n{C_n}}}{{{C_{n - 1}}}} = $