$x^2(1+x)^{98}+x^3(1+x)^{97}+x^4(1+x)^{96}+\ldots+x^{54}(1+x)^{46}$ ના વિસ્તરણમાં $x^{70}$ નો સહગુણક ${ }^{99} \mathrm{C}_{\mathrm{p}}-{ }^{46} \mathrm{C}_{\mathrm{q}}$ છે. તો $p+q$ ની શક્ય કિંમત ........... છે.
$55$
$61$
$68$
$83$
જો $(x+y)^{n}$ નાં વિસ્તરણમાં બધાજ સહગુણકોનો સરવાળો $4096,$ હોય તો મહતમ સહગુણક મેળવો.
જો ${C_0},{C_1},{C_2},.......,{C_n}$ એ દ્રીપદી સહગુણક છે , તો $2.{C_1} + {2^3}.{C_3} + {2^5}.{C_5} + ....$ = . . .
${\left( {1 - x - {x^2} + {x^3}} \right)^6}$ નાં વિસ્તરણમાં $x^7$ નો સહગુણક મેળવો.
જો ${(1 + x)^n} = {C_0} + {C_1}x + {C_2}{x^2} + .... + {C_n}{x^n}$, તો ${C_0} + 2{C_1} + 3{C_2} + .... + (n + 1){C_n}$ = . . .
જો ${S_n} = \sum\limits_{r = 0}^n {\frac{1}{{^n{C_r}}}} $ અને ${t_n} = \sum\limits_{r = 0}^n {\frac{r}{{^n{C_r}}}} $, તો $\frac{{{t_n}}}{{{S_n}}}$ = . . .