જો $\left(2 x ^{2}+3 x +4\right)^{10}=\sum \limits_{ r =0}^{20} a _{ r } x ^{ r } \cdot$ હોય તો $\frac{ a _{7}}{ a _{13}}$ ની કિમત શોધો 

  • [JEE MAIN 2020]
  • A

    $4$

  • B

    $32$

  • C

    $16$

  • D

    $8$

Similar Questions

$\sum\limits_{n = 0}^4 {{{\left( {1009 - 2n} \right)}^4}\left( \begin{gathered}
  4 \hfill \\
  n \hfill \\ 
\end{gathered}  \right)} {\left( { - 1} \right)^n}$   ની કિમત મેળવો 

જો  $\frac{{ }^{11} C_1}{2}+\frac{{ }^{11} C_2}{3}+\ldots . .+\frac{{ }^{11} C_9}{10}=\frac{n}{m}$ જ્યાં ગુ. સા. અ.  $\operatorname(n, m)=1$,હોય,તો  $n+m$ .....................

  • [JEE MAIN 2024]

$\sum\limits_{n = 1}^\infty {\frac{{^n{C_0} + ...{ + ^n}{C_n}}}{{^n{P_n}}}} $ = . . .

જો ${\left( {1 + x + {x^2}} \right)^{20}}\left( {2x + 1} \right) = {a_0} + {a_1}{x^1} + {a_2}{x^2} + ... + {a_{41}}{x^{41}}$ , હોય તો $\frac{{{a_0}}}{1} + \frac{{{a_1}}}{2} + .... + \frac{{{a_{41}}}}{{42}}$ ની કિમત મેળવો 

$(x + 2)^{n-1} + (x + 2)^{n-2}. (x + 1) + (x + 2)^{n-3} . (x + 1)^2; + ...... + (x + 1)^{n-1}$ ના વિસ્તરણમાં $x^r (0 \le r \le n - 1)$ નો સહગુણક મેળવો