$\sqrt 2 + \sqrt 3 + \sqrt 4 + \sqrt 6 $ is equal to
$\cot 7\frac{{{1^o}}}{2}$
$\sin 7\frac{{{1^o}}}{2}$
$\sin \,{15^o}$
$\cos \,\,{15^o}$
In any triangle $ABC ,$ ${\sin ^2}\frac{A}{2} + {\sin ^2}\frac{B}{2} + {\sin ^2}\frac{C}{2}$ is equal to
Prove that $\frac{\sin x-\sin 3 x}{\sin ^{2} x-\cos ^{2} x}=2 \sin x$
$cosec^2\theta $ = $\frac{4xy}{(x +y)^2}$ is true if and only if
If $\sin \theta = \frac{1}{2}\left( {\sqrt {\frac{x}{y}\,} + \,\sqrt {\frac{y}{x}} } \right)\,,\,\left( {x,y \in R\, - \{ 0\} } \right)$. Then
$\left( {\frac{{\sin 2A}}{{1 + \cos 2A}}} \right)\,\left( {\frac{{\cos A}}{{1 + \cos A}}} \right)= $