$\sqrt 2 + \sqrt 3 + \sqrt 4 + \sqrt 6 $ is equal to

  • [IIT 1966]
  • [IIT 1975]
  • A

    $\cot 7\frac{{{1^o}}}{2}$

  • B

    $\sin 7\frac{{{1^o}}}{2}$

  • C

    $\sin \,{15^o}$

  • D

    $\cos \,\,{15^o}$

Similar Questions

In any triangle $ABC ,$ ${\sin ^2}\frac{A}{2} + {\sin ^2}\frac{B}{2} + {\sin ^2}\frac{C}{2}$ is equal to

Prove that $\frac{\sin x-\sin 3 x}{\sin ^{2} x-\cos ^{2} x}=2 \sin x$

$cosec^2\theta $ = $\frac{4xy}{(x +y)^2}$ is true if and only if

If $\sin \theta  = \frac{1}{2}\left( {\sqrt {\frac{x}{y}\,}  + \,\sqrt {\frac{y}{x}} } \right)\,,\,\left( {x,y \in R\, - \{ 0\} } \right)$. Then

$\left( {\frac{{\sin 2A}}{{1 + \cos 2A}}} \right)\,\left( {\frac{{\cos A}}{{1 + \cos A}}} \right)= $