${\rm{cosec}}\theta + 2 = 0$ को सन्तुष्ट करने वाला $\theta (0 < \theta < {360^o})$ का मान है
${210^o},{300^o}$
${240^o},{300^o}$
${210^o},{240^o}$
${210^o},{330^o}$
यदि $\sin (A + B) =1$ तथा $\cos (A - B) = \frac{{\sqrt 3 }}{2},$ तो $A$ तथा $B$ के न्यूनतम धनात्मक मान हैं
यदि $3({\sec ^2}\theta + {\tan ^2}\theta ) = 5$, तो $\theta $ का व्यापक मान है
यदि $/cot (\alpha + \beta ) = 0,$ तब $\sin (\alpha + 2\beta ) = $
$[2,3]$ अंतराल में समीकरण $\sin \left(x+x^2\right)-\sin \left(x^2\right)=\sin x$ के कितने हल $x$ संभव हैं :
यदि $5\cos 2\theta + 2{\cos ^2}\frac{\theta }{2} + 1 = 0, - \pi < \theta < \pi $, तब $\theta = $