Trigonometrical Equations
medium

यदि $\tan 2\theta \tan \theta  = 1$, तो $\theta $ का व्यापक मान है

A

$\left( {n + \frac{1}{2}} \right)\frac{\pi }{3}$

B

$\left( {n + \frac{1}{2}} \right)\,\pi $

C

$\left( {2n \pm \frac{1}{2}} \right)\frac{\pi }{3}$

D

इनमें से कोई नहीं

Solution

(a) $\tan 2\theta = \cot \theta $

==> $\tan 2\theta = \tan {\rm{ }}\left( {\frac{\pi }{2} – \theta } \right)$

$ \Rightarrow $ $2\theta = n\pi + \frac{\pi }{2} – \theta$

$\Rightarrow \theta = \frac{{n\pi }}{3} + \frac{\pi }{6}$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.