$\Delta=\left|\begin{array}{ccc}2 & -3 & 5 \\ 6 & 0 & 4 \\ 1 & 5 & -7\end{array}\right|$ માટે ગુણધર્મ $2$ ની ચકાસણી કરો. 

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$\Delta  = \left| {\begin{array}{*{20}{r}}
  2&{ - 3}&5 \\ 
  6&0&4 \\ 
  1&5&{ - 7} 
\end{array}} \right| =  - 28{\text{ }}$

Interchanging rows $\mathrm{R}_{2}$ and $\mathrm{R}_{3}$ i.e., $\mathrm{R}_{2} \leftrightarrow \mathrm{R}_{3},$ we have

${\Delta _1} = \left| {\begin{array}{*{20}{r}}
  2&{ - 3}&5 \\ 
  1&5&{ - 7} \\ 
  6&0&4 
\end{array}} \right|$

Expanding the determinant $\Delta_{1}$ along first row, we have

${\Delta _1} = 2\left| {\begin{array}{*{20}{c}}
  5&{ - 7} \\ 
  0&4 
\end{array}} \right| - ( - 3)\left| {\begin{array}{*{20}{c}}
  1&{ - 7} \\ 
  6&4 
\end{array}} \right| + 5\left| {\begin{array}{*{20}{c}}
  1&5 \\ 
  6&0 
\end{array}} \right|$

$ = 2(20 - 0) + 3(4 + 42) + 5(0 - 30)$

$ = 40 + 138 - 150 = 28$

Clearly $\quad \Delta_{1}=-\Delta$

Hence, Property $2$ is verified.

Similar Questions

$\left|\begin{array}{ccc}102 & 18 & 36 \\ 1 & 3 & 4 \\ 17 & 3 & 6\end{array}\right|$ નું મૂલ્ય શોધો.

જો $a,b,c$ એ અસમાન હોય અને $\left| {\,\begin{array}{*{20}{c}}a&{{a^2}}&{{a^3} - 1}\\b&{{b^2}}&{{b^3} - 1}\\c&{{c^2}}&{{c^3} - 1}\end{array}\,} \right| = 0$ તો . . .

જો $\left| {\,\begin{array}{*{20}{c}}a&b&{a\alpha + b}\\b&c&{b\alpha + c}\\{a\alpha + b}&{b\alpha + c}&0\end{array}\,} \right| = 0$ તો $a,b,c$ એ . . . .શ્રેણીમાં છે .

  • [IIT 1987]

નિશ્ચાયકના ગુણધર્મનો ઉપયોગ કરી  સાબિત કરો કે, $\left|\begin{array}{lll}x & x^{2} & 1+p x^{3} \\ y & y^{2} & 1+p y^{3} \\ z & z^{2} & 1+p z^{3}\end{array}\right|=(1+p x y z)(x-y)(y-z)(z-x),$ $p$ અચળ છે. 

$\left| {\,\begin{array}{*{20}{c}}1&1&1\\{\cos (nx)}&{\cos (n + 1)x}&{\cos (n + 2)x}\\{\sin (nx)}&{\sin (n + 1)x}&{\sin (n + 2)x}\end{array}\,} \right|$ એ . . . પર આધારિત નથી .