Verify Property $2$ for $\Delta=\left|\begin{array}{ccc}2 & -3 & 5 \\ 6 & 0 & 4 \\ 1 & 5 & -7\end{array}\right|$
$\Delta = \left| {\begin{array}{*{20}{r}}
2&{ - 3}&5 \\
6&0&4 \\
1&5&{ - 7}
\end{array}} \right| = - 28{\text{ }}$
Interchanging rows $\mathrm{R}_{2}$ and $\mathrm{R}_{3}$ i.e., $\mathrm{R}_{2} \leftrightarrow \mathrm{R}_{3},$ we have
${\Delta _1} = \left| {\begin{array}{*{20}{r}}
2&{ - 3}&5 \\
1&5&{ - 7} \\
6&0&4
\end{array}} \right|$
Expanding the determinant $\Delta_{1}$ along first row, we have
${\Delta _1} = 2\left| {\begin{array}{*{20}{c}}
5&{ - 7} \\
0&4
\end{array}} \right| - ( - 3)\left| {\begin{array}{*{20}{c}}
1&{ - 7} \\
6&4
\end{array}} \right| + 5\left| {\begin{array}{*{20}{c}}
1&5 \\
6&0
\end{array}} \right|$
$ = 2(20 - 0) + 3(4 + 42) + 5(0 - 30)$
$ = 40 + 138 - 150 = 28$
Clearly $\quad \Delta_{1}=-\Delta$
Hence, Property $2$ is verified.
By using properties of determinants, show that:
$\left|\begin{array}{ccc}x+4 & 2 x & 2 x \\ 2 x & x+4 & 2 x \\ 2 x & 2 x & x+4\end{array}\right|=(5 x+4)(4-x)^{2}$
If $\left| {\,\begin{array}{*{20}{c}}{x + 1}&{x + 2}&{x + 3}\\{x + 2}&{x + 3}&{x + 4}\\{x + a}&{x + b}&{x + c}\end{array}\,} \right| = 0$, then $a,b,c$ are in
Using properties of determinants, prove that:
$\left|\begin{array}{lll}x & x^{2} & 1+p x^{3} \\ y & y^{2} & 1+p y^{3} \\ z & z^{2} & 1+p z^{3}\end{array}\right|=(1+p x y z)(x-y)(y-z)(z-x),$ where $p$ is any scalar.
If $ab + bc + ca = 0$ and $\left| {\,\begin{array}{*{20}{c}}{a - x}&c&b\\c&{b - x}&a\\b&a&{c - x}\end{array}\,} \right| = 0$, then one of the value of $x$ is
If $\omega $ is a complex cube root of unity, then the determinant $\left| {\,\begin{array}{*{20}{c}}2&{2\omega }&{ - {\omega ^2}}\\1&1&1\\1&{ - 1}&0\end{array}\,} \right| = $