What is the $pH$ of $0.001 \,M$ aniline solution? The ionization constant of aniline can be taken from Table . Calculate the degree of ionization of aniline in the solution. Also calculate the ionization constant of the conjugate acid of aniline.
Base | $K _{ b }$ |
Dimethylamine, $\left( CH _{3}\right)_{2} NH$ | $5.4 \times 10^{-4}$ |
Triethylamine, $\left( C _{2} H _{5}\right)_{3} N$ | $6.45 \times 10^{-5}$ |
Ammonia, $NH _{3}$ or $NH _{4} OH$ | $1.77 \times 10^{-5}$ |
Quinine, ( $A$ plant product) | $1.10 \times 10^{-6}$ |
Pyridine, $C _{5} H _{5} N$ | $1.77 \times 10^{-9}$ |
Aniline, $C _{6} H _{5} NH _{2}$ | $4.27 \times 10^{-10}$ |
Urea, $CO \left( NH _{2}\right)_{2}$ | $1.3 \times 10^{-14}$ |
$K_{b}=4.27 \times 10^{-10}$
$c=0.001 \,M\, pH$ $=?$
$a=?$
$k_{b}=c \alpha^{2}$
$4.27 \times 10^{-10}=0.001 \times \alpha^{2}$
$4270 \times 10^{-10}=\alpha^{2}$
$65.34 \times 10^{-5}=\alpha=6.53 \times 10^{-4}$
Then, [anion] $=c \alpha=.001 \times 65.34 \times 10^{-5}$
$=.065 \times 10^{-5}$
$ pOH =-\log \left(.065 \times 10^{-5}\right) $
$=6.187$
$pH =7.813$
Now,
$K_{a} \times K_{b}=K_{w}$
$\therefore 4.27 \times 10^{-10} \times K_{a}=K_{w}$
$ K_{a} =\frac{10^{-14}}{4.27 \times 10^{-10}}$
$=2.34 \times 10^{-5} $
Thus, the ionization constant of the conjugate acid of aniline is $2.34 \times 10^{-5}$
The solution of $N{a_2}C{O_3}$ has $pH$
Dissociation constat of weak acid $HA$ is $1.8 \times {10^{ - 4}}$ calculate Dissociation constant of its conjugate base ${A^ - }$
$p{K_a}$ value for acetic acid at the experimental temperature is $5$. The percentage hydrolysis of $0.1\,\,M$ sodium acetate solution will be
$50\ ml$ of $0.02\ M$ $NaHSO_4$ is mixed with $50$ $ml$ of $0.02\ M\ Na_2SO_4$. Calculate $pH$ of the resulting solution.$[pKa_2 (H_2SO_4) = 2]$
The first ionization constant of $H _{2} S$ is $9.1 \times 10^{-8}$. Calculate the concentration of $HS ^{-}$ ion in its $0.1 \,M$ solution. How will this concentration be affected if the solution is $0.1\, M$ in $HCl$ also? If the second dissociation constant of $H _{2} S$ is $1.2 \times 10^{-13}$, calculate the concentration of $S^{2-}$ under both conditions.