What is the $pH$ of $0.001 \,M$ aniline solution? The ionization constant of aniline can be taken from Table . Calculate the degree of ionization of aniline in the solution. Also calculate the ionization constant of the conjugate acid of aniline.

Base $K _{ b }$
Dimethylamine, $\left( CH _{3}\right)_{2} NH$ $5.4 \times 10^{-4}$
Triethylamine, $\left( C _{2} H _{5}\right)_{3} N$ $6.45 \times 10^{-5}$
Ammonia, $NH _{3}$ or $NH _{4} OH$ $1.77 \times 10^{-5}$
Quinine, ( $A$ plant product) $1.10 \times 10^{-6}$
Pyridine, $C _{5} H _{5} N$ $1.77 \times 10^{-9}$
Aniline, $C _{6} H _{5} NH _{2}$ $4.27 \times 10^{-10}$
Urea, $CO \left( NH _{2}\right)_{2}$ $1.3 \times 10^{-14}$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$K_{b}=4.27 \times 10^{-10}$

$c=0.001 \,M\, pH$ $=?$

$a=?$

$k_{b}=c \alpha^{2}$

$4.27 \times 10^{-10}=0.001 \times \alpha^{2}$

$4270 \times 10^{-10}=\alpha^{2}$

$65.34 \times 10^{-5}=\alpha=6.53 \times 10^{-4}$

Then, [anion] $=c \alpha=.001 \times 65.34 \times 10^{-5}$

$=.065 \times 10^{-5}$

$ pOH =-\log \left(.065 \times 10^{-5}\right) $

$=6.187$

$pH =7.813$

Now,

$K_{a} \times K_{b}=K_{w}$

$\therefore 4.27 \times 10^{-10} \times K_{a}=K_{w}$

$ K_{a} =\frac{10^{-14}}{4.27 \times 10^{-10}}$

$=2.34 \times 10^{-5} $

Thus, the ionization constant of the conjugate acid of aniline is $2.34 \times 10^{-5}$

Similar Questions

The percentage of pyridine $(C_5H_5N)$ that forms pyridinium ion $(C_5H_5N^+H)$ in a $0.10\, M$ aqueous pyridine solution ($K_b$ for $C_5H_5N = 1.7 \times 10^{-9}$) is

  • [NEET 2016]

The $pH$ of two equimolar weak acids are $3.0$ and $5.0$ respectively. Their relative strength is

${K_b}$ of $N{H_4}OH = 1.8 \times {10^{ - 5}}$ calculate $pH$ of $0.15$ $mol$ $N{H_4}OH$ and $0.25$ $mol$ $N{H_4}OH$ containing solution.

The ionization constant of acetic acid is $1.74 \times 10^{-5}$. Calculate the degree of dissociation of acetic acid in its $0.05\, M$ solution. Calculate the concentration of acetate ion in the solution and its $pH$.

$0.01\, M \,HA(aq.)$ is $2\%$ ionized, $[OH^-]$ of solution is :-