What is the $pH$ of $0.001 \,M$ aniline solution? The ionization constant of aniline can be taken from Table . Calculate the degree of ionization of aniline in the solution. Also calculate the ionization constant of the conjugate acid of aniline.
Base | $K _{ b }$ |
Dimethylamine, $\left( CH _{3}\right)_{2} NH$ | $5.4 \times 10^{-4}$ |
Triethylamine, $\left( C _{2} H _{5}\right)_{3} N$ | $6.45 \times 10^{-5}$ |
Ammonia, $NH _{3}$ or $NH _{4} OH$ | $1.77 \times 10^{-5}$ |
Quinine, ( $A$ plant product) | $1.10 \times 10^{-6}$ |
Pyridine, $C _{5} H _{5} N$ | $1.77 \times 10^{-9}$ |
Aniline, $C _{6} H _{5} NH _{2}$ | $4.27 \times 10^{-10}$ |
Urea, $CO \left( NH _{2}\right)_{2}$ | $1.3 \times 10^{-14}$ |
$K_{b}=4.27 \times 10^{-10}$
$c=0.001 \,M\, pH$ $=?$
$a=?$
$k_{b}=c \alpha^{2}$
$4.27 \times 10^{-10}=0.001 \times \alpha^{2}$
$4270 \times 10^{-10}=\alpha^{2}$
$65.34 \times 10^{-5}=\alpha=6.53 \times 10^{-4}$
Then, [anion] $=c \alpha=.001 \times 65.34 \times 10^{-5}$
$=.065 \times 10^{-5}$
$ pOH =-\log \left(.065 \times 10^{-5}\right) $
$=6.187$
$pH =7.813$
Now,
$K_{a} \times K_{b}=K_{w}$
$\therefore 4.27 \times 10^{-10} \times K_{a}=K_{w}$
$ K_{a} =\frac{10^{-14}}{4.27 \times 10^{-10}}$
$=2.34 \times 10^{-5} $
Thus, the ionization constant of the conjugate acid of aniline is $2.34 \times 10^{-5}$
The percentage of pyridine $(C_5H_5N)$ that forms pyridinium ion $(C_5H_5N^+H)$ in a $0.10\, M$ aqueous pyridine solution ($K_b$ for $C_5H_5N = 1.7 \times 10^{-9}$) is
The $pH$ of two equimolar weak acids are $3.0$ and $5.0$ respectively. Their relative strength is
${K_b}$ of $N{H_4}OH = 1.8 \times {10^{ - 5}}$ calculate $pH$ of $0.15$ $mol$ $N{H_4}OH$ and $0.25$ $mol$ $N{H_4}OH$ containing solution.
The ionization constant of acetic acid is $1.74 \times 10^{-5}$. Calculate the degree of dissociation of acetic acid in its $0.05\, M$ solution. Calculate the concentration of acetate ion in the solution and its $pH$.
$0.01\, M \,HA(aq.)$ is $2\%$ ionized, $[OH^-]$ of solution is :-