What is the $pH$ of the resulting solution when equal volumes of $0.1\, M\, NaOH$ and $0.01\, M\, HCl$ are mixed?
$2$
$7$
$1.04$
$12.65$
A certain amount of $H_2CO_3$ & $HCl$ are dissolved to form $1$ litre solution. At equilibrium it is found that concentration of $H_2CO_3$ & $CO_3^{-\,-}$ are $0.1\,M$ & $0.01\,M$ respectively. Calculate the $pH$ of solution. Given that for $H_2CO_3$ $K_{a_1} =10^{-5}$ & $K_{a_2} =10^{-8}$
Dissociation constant for a monobasic acid is $10^{-4}$ . What is the $pH$ of the monobasic acid ? (If $\%$ dissociation $= 2\,\%$ )
Sulphurous acid $\left( H _{2} SO _{3}\right)$ has $Ka _{1}=1.7 \times 10^{-2}$ and $Ka _{2}=6.4 \times 10^{-8} .$ The $pH$ of $0.588 \,M\, H _{2} SO _{3}$ is ..... . (Round off to the Nearest Integer)
The first and second dissociation constants of an acid $H_2A$ are $1.0 \times 10^{-5}$ and $5.0 \times 10^{-10}$ respectively. The overall dissociation constant of the acid will be
The $ pH$ of $ 0.1$ $M$ acetic acid is $3$, the dissociation constant of acid will be