What is the temperature (in $^oC$) of the steel-copper junction in the steady state of the system shown in Figure Length of the steel rod $=15.0\; cm ,$ length of the copper rod $=10.0\; cm ,$ temperature of the furnace $=300^{\circ} C ,$ temperature of the other end $=0^{\circ} C .$ The area of cross section of the steel rod is twice that of the copper rod. (Thermal conductivity of steel $=50.2 \;J s ^{-1} m ^{-1} K ^{-1} ;$ and of copper $\left.=385 \;J s ^{-1} m ^{-1} K ^{-1}\right)$
$\frac{K_{1} A_{1}(300-T)}{L_{1}}=\frac{K_{2} A_{2}(T-0)}{L_{2}}$
where $1$ and $2$ refer to the steel and copper rod respectively. For
$A_{1}=2 A_{2}, L_{1}=15.0 cm$
$L_{2}=10.0 cm , K_{1}=50.2 J s ^{-1} m ^{-1}$$K ^{-1}, K_{2}=385 J$
$s ^{-1} m ^{-1} K ^{-1},$ we have
$\frac{50.2 \times 2(300-T)}{15}=\frac{385 T}{10}$
which gives $T=44.4^{\circ} C$
Four identical rods of same material are joined end to end to form a square. If the temperature difference between the ends of a diagonal is ${100^o}C$, then the temperature difference between the ends of other diagonal will be ........ $^oC$
Two different rods $A$ and $B$ are kept as shown in figure. The variation of temperature of different cross sections is plotted in a graph shown in figure. The ratio of thermal conductivities of $A$ and $B$ is
The two ends of a rod of length $L$ and a uniform cross-sectional area $A$ are kept at two temperatures $T_1$ and $T_2 (T_1 > T_2)$. The rate of heat transfer,$\frac{ dQ }{dt}$, through the rod in a steady state is given by
Select correct statement related to heat .......
A cylindrical steel rod of length $0.10 \,m$ and thermal conductivity $50 \,Wm ^{-1} K ^{-1}$ is welded end to end to copper rod of thermal conductivity $400 \,Wm ^{-1} K ^{-1}$ and of the same area of cross-section but $0.20 \,m$ long. The free end of the steel rod is maintained at $100^{\circ} C$ and that of the copper rod at $0^{\circ} C$. Assuming that the rods are perfectly insulated from the surrounding, the temperature at the junction of the two rods is ................... $^{\circ} C$