અંતરાલ સ્વરૂપે લખો : $\{ x:x \in R,0\, \le \,x\, < \,7\} $
$A=\{1,2,\{3,4\}, 5\}$ છે. વિધાન સત્ય છે કે અસત્ય છે ? શા માટે ? : $1 \in A$
ગણ $\{ x:x$ એ ધન પૂર્ણાંક સંખ્યા છે અને ${x^2} < 40\} $ ને યાદીની રીતે લખો.
વિધાન સત્ય બને તે રીતે ખાલી જગ્યામાં સંજ્ઞા $\subset$ અથવા $ \not\subset $ પૂરો: $\{ x:x$ એ યુગ્મ પ્રાકૃતિક સંખ્યા છે. $\} \ldots \{ x:x$ એ પૂર્ણાંક સંખ્યા છે. $\} $
ખાલીગણનાં છે ? : $\{ y:y$ એ બે ભિન્ન સમાંતર રેખાઓનું સામાન્ય બિંદુ છે. $\} $